243 resultados para Climate Impact


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aviation causes climate change as a result of its emissions of CO2, oxides of nitrogen, aerosols, and water vapor. One simple method of quantifying the climate impact of past emissions is radiative forcing. The radiative forcing due to changes in CO2 is best characterized, but there are formidable difficulties in estimating the non-CO2 forcings – this is particularly the case for possible aviation-induced changes in cloudiness (AIC). The most recent comprehensive assessment gave a best estimate of the 2005 total radiative forcing due to aviation of about 55–78 mW m−2 depending on whether AIC was included or not, with an uncertainty of at least a factor of 2. The aviation CO2 radiative forcing represents about 1.6% of the total CO2 forcing from all human activities. It is estimated that, including the non-CO2 effects, aviation contributes between 1.3 and 14% of the total radiative forcing due to all human activities. Alternative methods for comparing the future impact of present-day aviation emissions are presented – the perception of the relative importance of the non-CO2 emissions, relative to CO2, depends considerably on the chosen method and the parameters chosen within those methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect(1), although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate(2). Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds(3). Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive(1,2,4). Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model(5,6) for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A global river routing scheme coupled to the ECMWF land surface model is implemented and tested within the framework of the Global Soil Wetness Project II, to evaluate the feasibility of modelling global river runoff at a daily time scale. The exercise is designed to provide benchmark river runoff predictions needed to verify the land surface model. Ten years of daily runoff produced by the HTESSEL land surface scheme is input into the TRIP2 river routing scheme in order to generate daily river runoff. These are then compared to river runoff observations from the Global Runoff Data Centre (GRDC) in order to evaluate the potential and the limitations. A notable source of inaccuracy is bias between observed and modelled discharges which is not primarily due to the modelling system but instead of to the forcing and quality of observations and seems uncorrelated to the river catchment size. A global sensitivity analysis and Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty analysis are applied to the global routing model. The ground water delay parameter is identified as being the most sensitive calibration parameter. Significant uncertainties are found in results, and those due to parameterisation of the routing model are quantified. The difficulty involved in parameterising global river discharge models is discussed. Detailed river runoff simulations are shown for the river Danube, which match well observed river runoff in upstream river transects. Results show that although there are errors in runoff predictions, model results are encouraging and certainly indicative of useful runoff predictions, particularly for the purpose of verifying the land surface scheme hydrologicly. Potential of this modelling system on future applications such as river runoff forecasting and climate impact studies is highlighted. Copyright © 2009 Royal Meteorological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A regional climate model is used to investigate changes in Israel and Jordan precipitation at the end of the 21st century on daily to monthly timescales. The model predicts that this region will get significantly drier at the peak of the rainy season, reflecting a reduction in both the frequency and duration of rainy events. These changes may be associated with a reduction in the strength of the Mediterranean storm track

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.