50 resultados para Clear majority
The importance of the relationship between scale and process in understanding long-term DOC dynamics
Resumo:
Concentrations of dissolved organic carbon have increased in many, but not all, surface waters across acid impacted areas of Europe and North America over the last two decades. Over the last eight years several hypotheses have been put forward to explain these increases, but none are yet accepted universally. Research in this area appears to have reached a stalemate between those favouring declining atmospheric deposition, climate change or land management as the key driver of long-term DOC trends. While it is clear that many of these factors influence DOC dynamics in soil and stream waters, their effect varies over different temporal and spatial scales. We argue that regional differences in acid deposition loading may account for the apparent discrepancies between studies. DOC has shown strong monotonic increases in areas which have experienced strong downward trends in pollutant sulphur and/or seasalt deposition. Elsewhere climatic factors, that strongly influence seasonality, have also dominated inter-annual variability, and here long-term monotonic DOC trends are often difficult to detect. Furthermore, in areas receiving similar acid loadings, different catchment characteristics could have affected the site specific sensitivity to changes in acidity and therefore the magnitude of DOC release in response to changes in sulphur deposition. We suggest that confusion over these temporal and spatial scales of investigation has contributed unnecessarily to the disagreement over the main regional driver(s) of DOC trends, and that the data behind the majority of these studies is more compatible than is often conveyed.
Resumo:
Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat-core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea-salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea-salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising.
Resumo:
In this paper, observations by a ground-based vertically pointing Doppler lidar and sonic anemometer are used to investigate the diurnal evolution of boundary-layer turbulence in cloudless, cumulus and stratocumulus conditions. When turbulence is driven primarily by surface heating, such as in cloudless and cumulus-topped boundary layers, both the vertical velocity variance and skewness follow similar profiles, on average, to previous observational studies of turbulence in convective conditions, with a peak skewness of around 0.8 in the upper third of the mixed layer. When the turbulence is driven primarily by cloud-top radiative cooling, such as in the presence of nocturnal stratocumulus, it is found that the skewness is inverted in both sign and height: its minimum value of around −0.9 occurs in the lower third of the mixed layer. The profile of variance is consistent with a cloud-top cooling rate of around 30Wm−2. This is also consistent with the evolution of the thermodynamic profile and the rate of growth of the mixed layer into the stable nocturnal boundary layer from above. In conditions where surface heating occurs simultaneously with cloud-top cooling, the skewness is found to be useful for diagnosing the source of the turbulence, suggesting that long-term Doppler lidar observations would be valuable for evaluating boundary-layer parametrization schemes. Copyright c 2009 Royal Meteorological Society
The dependence of clear-sky outgoing longwave radiation on surface temperature and relative humidity
Resumo:
A simulation of the earth's clear-sky long-wave radiation budget is used to examine the dependence of clear-sky outgoing long-wave radiation (OLR) on surface temperature and relative humidity. the simulation uses the European Centre for Medium-Range Weather Forecasts global reanalysed fields to calculate clear-sky OLR over the period from January 1979 to December 1993, thus allowing the seasonal and interannual time-scales to be resolved. the clear-sky OLR is shown to be primarily dependent on temperature changes at high latitudes and on changes in relative humidity at lower latitudes. Regions exhibiting a ‘super-greenhouse’ effect are identified and are explained by considering the changes in the convective regime associated with the Hadley circulation over the seasonal cycle, and with the Walker circulation over the interannual time-scale. the sensitivity of clear-sky OLR to changes in relative humidity diminishes with increasing relative humidity. This is explained by the increasing saturation of the water-vapour absorption bands with increased moisture. By allowing the relative humidity to vary in specified vertical slabs of the troposphere over an interannual time-scale it is shown that changes in humidity in the mid troposphere (400 to 700 hPa) are of most importance in explaining clear-sky OLR variations. Relative humidity variations do not appear to affect the positive thermodynamic water-vapour feedback significantly in response to surface temperature changes.
Resumo:
Fieldwork is regarded as an important component of many bioscience degree programmes. QAA benchmarks statements refer explicitly to the importance of fieldwork, although give no indication of amounts of field provision expected. Previous research has highlighted the importance of fieldwork to the learning of both subject-specific and transferable skills. However, it is unclear how the amount and type of fieldwork currently offered is being affected by the recent expansion in student numbers and current funding constraints. Here we review contemporary literature and report on the results of a questionnaire completed by bioscience tutors across 33 UK institutions. The results suggest, perhaps contrary to anecdotal evidence, that the amount of fieldwork being undertaken by students is not in decline and that on the whole, programmes contain reasonable amounts of fieldwork. The majority of programmes involved UK-based fieldwork, but a number of programmes also offered ‘exotic’ overseas fieldwork which was considered important in terms of student recruitment as well as exposing students to a diversity of field learning environments. Tutors were very clear about the benefits of fieldwork and the need to be proactive to maintain its provision.
Resumo:
We use microwave retrievals of upper tropospheric humidity (UTH) to estimate the impact of clear-sky-only sampling by infrared instruments on the distribution, variability and trends in UTH. Our method isolates the impact of the clear-sky-only sampling, without convolving errors from other sources. On daily time scales IR-sampled UTH contains large data gaps in convectively active areas, with only about 20-30 % of the tropics (30 S 30 N) being sampled. This results in a dry bias of about -9 %RH in the area-weighted tropical daily UTH time series. On monthly scales, maximum clear-sky bias (CSB) is up to -30 %RH over convectively active areas. The magnitude of CSB shows significant correlations with UTH itself (-0.5) and also with the variability in UTH (-0.6). We also show that IR-sampled UTH time series have higher interannual variability and smaller trends compared to microwave sampling. We argue that a significant part of the smaller trend results from the contrasting influence of diurnal drift in the satellite measurements on the wet and dry regions of the tropics.
Resumo:
The West African summer monsoon (WAM) is an important driver of the global climate and locally provides most of the annual rainfall. A solid climatological knowledge of the complex vertical cloud structure is invaluable to forecasters and modelers to improve the understanding of the WAM. In this paper, 4 years of data from the CloudSat profiling radar and CALIPSO are used to create a composite zonal mean vertical cloud and precipitation structure for the WAM. For the first time, the near-coincident vertical radar and lidar profiles allow for the identification of individual cloud types from optically thin cirrus and shallow cumulus to congestus and deep convection. A clear diurnal signal in zonal mean cloud structure is observed for the WAM, with deep convective activity enhanced at night producing extensive anvil and cirrus, while daytime observations show more shallow cloud and congestus. A layer of altocumulus is frequently observed over the Sahara at night and day, extending southward to the coastline, and the majority of this cloud is shown to contain supercooled liquid in the top. The occurrence of deep convective systems and congestus in relation to the position of the African easterly jet is studied, but only the daytime cumulonimbus distribution indicates some influence of the jet position.
Resumo:
This paper records and analyses the results of a questionnaire survey, undertaken in Reading in January and February 1994, into the awareness and use of Reading's town centre gardens. The results indicate that although the majority of those interviewed were aware of one or more of the gardens, relatively few visit any of the gardens and, of those who do, the majority visit infrequently. Although the gardens are generally very well liked by those who use them, no clear reasons emerge as to the motivation for visiting, beyond using them as a short cut or as a source of fresh air and tranquillity. Equally, beyond the provision of information and signposting, there appears to be little to turn current non-users into users of the gardens. The report concludes that beyond some managerial issues such as safety and cleanliness, the Borough Council needs to address the extent to which the gardens could play a more central role in the life of the town and, if this is the case, how this might be achieved.
Resumo:
Recent research has shown that Lighthill–Ford spontaneous gravity wave generation theory, when applied to numerical model data, can help predict areas of clear-air turbulence. It is hypothesized that this is the case because spontaneously generated atmospheric gravity waves may initiate turbulence by locally modifying the stability and wind shear. As an improvement on the original research, this paper describes the creation of an ‘operational’ algorithm (ULTURB) with three modifications to the original method: (1) extending the altitude range for which the method is effective downward to the top of the boundary layer, (2) adding turbulent kinetic energy production from the environment to the locally produced turbulent kinetic energy production, and, (3) transforming turbulent kinetic energy dissipation to eddy dissipation rate, the turbulence metric becoming the worldwide ‘standard’. In a comparison of ULTURB with the original method and with the Graphical Turbulence Guidance second version (GTG2) automated procedure for forecasting mid- and upper-level aircraft turbulence ULTURB performed better for all turbulence intensities. Since ULTURB, unlike GTG2, is founded on a self-consistent dynamical theory, it may offer forecasters better insight into the causes of the clear-air turbulence and may ultimately enhance its predictability.
Resumo:
The vulnerability of smallholder farmers to climate change and variability is increasingly rising. As agriculture is the only source of income for most of them, agricultural adaptation with respect to climate change is vital for their sustenance and to ensure food security. In order to develop appropriate strategies and institutional responses, it is necessary to have a clear understanding of the farmers’ perception of climate change, actual adaptations at farm-level and what factors drive and constrain their decision to adapt. Thus, this study investigates the farm-level adaptation to climate change based on the case of a farming community in Sri Lanka. The findings revealed that farmers’ perceived the ongoing climate change based on their experiences. Majority of them adopted measures to address climate change and variability. These adaptation measures can be categorised into five groups, such as crop management, land management, irrigation management, income diversification, and rituals. The results showed that management of non-climatic factors was an important strategy to enhance farmers’ adaptation, particularly in a resource-constrained smallholder farming context. The results of regression analysis indicated that human cognition was an important determinant of climate change adaptation. Social networks were also found to significantly influence adaptation. The study also revealed that social barriers, such as cognitive and normative factors, are equally important as other economic barriers to adaptation. While formulating and implementing the adaptation strategies, this study underscored the importance of understanding socio-economic, cognitive and normative aspects of the local communities.