28 resultados para Classification Automatic Modulation. Correntropy. Radio Cognitive
Resumo:
Recent research in cognitive neuroscience has found that observation of human actions activates the ‘mirror system’ and provokes automatic imitation to a greater extent than observation of non-biological movements. The present study investigated whether this human bias depends primarily on phylogenetic or ontogenetic factors by examining the effects of sensorimotor experience on automatic imitation of non-biological robotic, stimuli. Automatic imitation of human and robotic action stimuli was assessed before and after training. During these test sessions, participants were required to execute a pre-specified response (e.g. to open their hand) while observing a human or robotic hand making a compatible (opening) or incompatible (closing) movement. During training, participants executed opening and closing hand actions while observing compatible (group CT) or incompatible movements (group IT) of a robotic hand. Compatible, but not incompatible, training increased automatic imitation of robotic stimuli (speed of responding on compatible trials, compared with incompatible trials) and abolished the human bias observed at pre-test. These findings suggest that the development of the mirror system depends on sensorimotor experience, and that, in our species, it is biased in favour of human action stimuli because these are more abundant than non-biological action stimuli in typical developmental environments.
Resumo:
Visual observation of human actions provokes more motor activation than observation of robotic actions. We investigated the extent to which this visuomotor priming effect is mediated by bottom-up or top-down processing. The bottom-up hypothesis suggests that robotic movements are less effective in activating the ‘mirror system’ via pathways from visual areas via the superior temporal sulcus to parietal and premotor cortices. The top-down hypothesis postulates that beliefs about the animacy of a movement stimulus modulate mirror system activity via descending pathways from areas such as the temporal pole and prefrontal cortex. In an automatic imitation task, subjects performed a prespecified movement (e.g. hand opening) on presentation of a human or robotic hand making a compatible (opening) or incompatible (closing) movement. The speed of responding on compatible trials, compared with incompatible trials, indexed visuomotor priming. In the first experiment, robotic stimuli were constructed by adding a metal and wire ‘wrist’ to a human hand. Questionnaire data indicated that subjects believed these movements to be less animate than those of the human stimuli but the visuomotor priming effects of the human and robotic stimuli did not differ. In the second experiment, when the robotic stimuli were more angular and symmetrical than the human stimuli, human movements elicited more visuomotor priming than the robotic movements. However, the subjects’ beliefs about the animacy of the stimuli did not affect their performance. These results suggest that bottom-up processing is primarily responsible for the visuomotor priming advantage of human stimuli.
Resumo:
Recent behavioural and neuroimaging studies have found that observation of human movement, but not of robotic movement, gives rise to visuomotor priming. This implies that the 'mirror neuron' or 'action observation–execution matching' system in the premotor and parietal cortices is entirely unresponsive to robotic movement. The present study investigated this hypothesis using an 'automatic imitation' stimulus–response compatibility procedure. Participants were required to perform a prespecified movement (e.g. opening their hand) on presentation of a human or robotic hand in the terminal posture of a compatible movement (opened) or an incompatible movement (closed). Both the human and the robotic stimuli elicited automatic imitation; the prespecified action was initiated faster when it was cued by the compatible movement stimulus than when it was cued by the incompatible movement stimulus. However, even when the human and robotic stimuli were of comparable size, colour and brightness, the human hand had a stronger effect on performance. These results suggest that effector shape is sufficient to allow the action observation–matching system to distinguish human from robotic movement. They also indicate, as one would expect if this system develops through learning, that to varying degrees both human and robotic action can be 'simulated' by the premotor and parietal cortices.
Resumo:
This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.
Resumo:
There is increasing evidence to suggest neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. The molecular mechanisms underlying such neurodegenerative processes are rather complex and involve modulation of the mitogen-activated protein kinase (MAPK) and NF-κB pathways leading to the generation of nitric oxide (NO). Such a small molecule may diffuse to the neighbouring neurons and trigger neuronal death through the inhibition of mitochondrial respiration and increases in the reactive oxygen and nitrogen species. Recently, attention has focused on the neuroprotective effects of flavonoids which have been effective in protecting against both age-related cognitive and motor decline in vivo. Although, the precise mechanisms by which flavonoids may exert their neuroprotective effects remain unclear, accumulating evidence suggest that they may exert their neuroprotective effects through the modulation of the MAP Kinase and PI3 Kinase signaling pathways. The aim of the present chapter is to highlight the potential neuroprotective role of dietary flavonoids in terms of their ability to modulate neuroinflammation in the central nervous system. We will provide an outline of the role glial cells play in neuroinflammation and describe the involvement of inflammatory mediators, produced by glia, in the cascade of events leading to neuronal degeneration. We will then present the evidence that flavonoids may modulate neuroinflammation by inhibiting the production of these inflammatory agents and summarise their potential mechanisms of action.
Resumo:
World-wide structural genomics initiatives are rapidly accumulating structures for which limited functional information is available. Additionally, state-of-the art structural prediction programs are now capable of generating at least low resolution structural models of target proteins. Accurate detection and classification of functional sites within both solved and modelled protein structures therefore represents an important challenge. We present a fully automatic site detection method, FuncSite, that uses neural network classifiers to predict the location and type of functionally important sites in protein structures. The method is designed primarily to require only backbone residue positions without the need for specific side-chain atoms to be present. In order to highlight effective site detection in low resolution structural models FuncSite was used to screen model proteins generated using mGenTHREADER on a set of newly released structures. We found effective metal site detection even for moderate quality protein models illustrating the robustness of the method.
Resumo:
Recent research shows that speakers of languages with obligatory plural marking (English) preferentially categorize objects based on common shape, whereas speakers of nonplural-marking classifier languages (Yucatec and Japanese) preferentially categorize objects based on common material. The current study extends that investigation to the domain of bilingualism. Japanese and English monolinguals, and Japanese–English bilinguals were asked to match novel objects based on either common shape or color. Results showed that English monolinguals selected shape significantly more than Japanese monolinguals, whereas the bilinguals shifted their cognitive preferences as a function of their second language proficiency. The implications of these findings for conceptual representation and cognitive processing in bilinguals are discussed.
Resumo:
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
We show that the affective experience of touch and the sight of touch can be modulated by cognition, and investigate in an fMRI study where top-down cognitive modulations of bottom-up somatosensory and visual processing of touch and its affective value occur in the human brain. The cognitive modulation was produced by word labels, 'Rich moisturizing cream' or 'Basic cream', while cream was being applied to the forearm, or was seen being applied to a forearm. The subjective pleasantness and richness were modulated by the word labels, as were the fMRI activations to touch in parietal cortex area 7, the insula and ventral striatum. The cognitive labels influenced the activations to the sight of touch and also the correlations with pleasantness in the pregenual cingulate/orbitofrontal cortex and ventral striatum. Further evidence of how the orbitofrontal cortex is involved in affective aspects of touch was that touch to the forearm [which has C fiber Touch (CT) afferents sensitive to light touch] compared with touch to the glabrous skin of the hand (which does not) revealed activation in the mid-orbitofrontal cortex. This is of interest as previous studies have suggested that the CT system is important in affiliative caress-like touch between individuals.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
The hippocampus plays a pivotal role in the formation and consolidation of episodic memories, and in spatial orientation. Historically, the adult hippocampus has been viewed as a very static anatomical region of the mammalian brain. However, recent findings have demonstrated that the dentate gyrus of the hippocampus is an area of tremendous plasticity in adults, involving not only modifications of existing neuronal circuits, but also adult neurogenesis. This plasticity is regulated by complex transcriptional networks, in which the transcription factor NF-κB plays a prominent role. To study and manipulate adult neurogenesis, a transgenic mouse model for forebrain-specific neuronal inhibition of NF-κB activity can be used. In this study, methods are described for the analysis of NF-κB-dependent neurogenesis, including its structural aspects, neuronal apoptosis and progenitor proliferation, and cognitive significance, which was specifically assessed via a dentate gyrus (DG)-dependent behavioral test, the spatial pattern separation-Barnes maze (SPS-BM). The SPS-BM protocol could be simply adapted for use with other transgenic animal models designed to assess the influence of particular genes on adult hippocampal neurogenesis. Furthermore, SPS-BM could be used in other experimental settings aimed at investigating and manipulating DG-dependent learning, for example, using pharmacological agents.
Resumo:
The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.