30 resultados para Classes of Analytic Functions
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.
Resumo:
This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.
Resumo:
This paper considers general second kind integral equations of the form(in operator form φ − kφ = ψ), where the functions k and ψ are assumed known, with ψ ∈ Y, the space of bounded continuous functions on R, and k such that the mapping s → k(s, · ), from R to L1(R), is bounded and continuous. The function φ ∈ Y is the solution to be determined. Conditions on a set W ⊂ BC(R, L1(R)) are obtained such that a generalised Fredholm alternative holds: If W satisfies these conditions and I − k is injective for all k ∈ W then I − k is also surjective for all k ∈ W and, moreover, the inverse operators (I − k) − 1 on Y are uniformly bounded for k ∈ W. The approximation of the kernel in the integral equation by a sequence (kn) converging in a weak sense to k is also considered and results on stability and convergence are obtained. These general theorems are used to establish results for two special classes of kernels: k(s, t) = κ(s − t)z(t) and k(s, t) = κ(s − t)λ(s − t, t), where κ ∈ L1(R), z ∈ L∞(R), and λ ∈ BC((R\{0}) × R). Kernels of both classes arise in problems of time harmonic wave scattering by unbounded surfaces. The general integral equation results are here applied to prove the existence of a solution for a boundary integral equation formulation of scattering by an infinite rough surface and to consider the stability and convergence of approximation of the rough surface problem by a sequence of diffraction grating problems of increasingly large period.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, P�, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.
Resumo:
There are various situations in which it is natural to ask whether a given collection of k functions, ρ j (r 1,…,r j ), j=1,…,k, defined on a set X, are the first k correlation functions of a point process on X. Here we describe some necessary and sufficient conditions on the ρ j ’s for this to be true. Our primary examples are X=ℝ d , X=ℤ d , and X an arbitrary finite set. In particular, we extend a result by Ambartzumian and Sukiasian showing realizability at sufficiently small densities ρ 1(r). Typically if any realizing process exists there will be many (even an uncountable number); in this case we prove, when X is a finite set, the existence of a realizing Gibbs measure with k body potentials which maximizes the entropy among all realizing measures. We also investigate in detail a simple example in which a uniform density ρ and translation invariant ρ 2 are specified on ℤ; there is a gap between our best upper bound on possible values of ρ and the largest ρ for which realizability can be established.
Resumo:
For Wiener spaces conditional expectations and $L^{2}$-martingales w.r.t. the natural filtration have a natural representation in terms of chaos expansion. In this note an extension to larger classes of processes is discussed. In particular, it is pointed out that orthogonality of the chaos expansion is not required.
Resumo:
The linear viscoelastic (LVE) spectrum is one of the primary fingerprints of polymer solutions and melts, carrying information about most relaxation processes in the system. Many single chain theories and models start with predicting the LVE spectrum to validate their assumptions. However, until now, no reliable linear stress relaxation data were available from simulations of multichain systems. In this work, we propose a new efficient way to calculate a wide variety of correlation functions and mean-square displacements during simulations without significant additional CPU cost. Using this method, we calculate stress−stress autocorrelation functions for a simple bead−spring model of polymer melt for a wide range of chain lengths, densities, temperatures, and chain stiffnesses. The obtained stress−stress autocorrelation functions were compared with the single chain slip−spring model in order to obtain entanglement related parameters, such as the plateau modulus or the molecular weight between entanglements. Then, the dependence of the plateau modulus on the packing length is discussed. We have also identified three different contributions to the stress relaxation: bond length relaxation, colloidal and polymeric. Their dependence on the density and the temperature is demonstrated for short unentangled systems without inertia.
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
Earthworms perform a number of essential functions in soil; the impacts of metals on earthworms are often investigated. In this review we consider the range of earthworm species, types of soil and forms of metal for which metal uptake and accumulation have been studied, the design of these experiments and the quantitative relationships that have been derived to predict earthworm metal body burden. We conclude that there is a need for more studies on earthworm species other than Eisenia fetida in order to apply the large existing database on this earthworm to other, soil dwelling species. To aid comparisons between studies agreement is needed on standard protocols that define exposure and deputation periods and the parameters, such as soil solution composition, soil chemical and physical properties to be measured. It is recommended that more field or terrestrial model ecosystem studies using real contaminated soil rather than metal-amended artificial soils are performed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A chapter based on a paper given at major conference, arguing that the civic and architectural contexts of many public libraries in the Roman world contributed strongly to their status as conspicuous 'public' buildings, and should inform the way we think of library functions in the Roman world
Resumo:
A full assessment of para-virtualization is important, because without knowledge about the various overheads, users can not understand whether using virtualization is a good idea or not. In this paper we are very interested in assessing the overheads of running various benchmarks on bare-‐metal, as well as on para-‐virtualization. The idea is to see what the overheads of para-‐ virtualization are, as well as looking at the overheads of turning on monitoring and logging. The knowledge from assessing various benchmarks on these different systems will help a range of users understand the use of virtualization systems. In this paper we assess the overheads of using Xen, VMware, KVM and Citrix, see Table 1. These different virtualization systems are used extensively by cloud-‐users. We are using various Netlib1 benchmarks, which have been developed by the University of Tennessee at Knoxville (UTK), and Oak Ridge National Laboratory (ORNL). In order to assess these virtualization systems, we run the benchmarks on bare-‐metal, then on the para-‐virtualization, and finally we turn on monitoring and logging. The later is important as users are interested in Service Level Agreements (SLAs) used by the Cloud providers, and the use of logging is a means of assessing the services bought and used from commercial providers. In this paper we assess the virtualization systems on three different systems. We use the Thamesblue supercomputer, the Hactar cluster and IBM JS20 blade server (see Table 2), which are all servers available at the University of Reading. A functional virtualization system is multi-‐layered and is driven by the privileged components. Virtualization systems can host multiple guest operating systems, which run on its own domain, and the system schedules virtual CPUs and memory within each Virtual Machines (VM) to make the best use of the available resources. The guest-‐operating system schedules each application accordingly. You can deploy virtualization as full virtualization or para-‐virtualization. Full virtualization provides a total abstraction of the underlying physical system and creates a new virtual system, where the guest operating systems can run. No modifications are needed in the guest OS or application, e.g. the guest OS or application is not aware of the virtualized environment and runs normally. Para-‐virualization requires user modification of the guest operating systems, which runs on the virtual machines, e.g. these guest operating systems are aware that they are running on a virtual machine, and provide near-‐native performance. You can deploy both para-‐virtualization and full virtualization across various virtualized systems. Para-‐virtualization is an OS-‐assisted virtualization; where some modifications are made in the guest operating system to enable better performance. In this kind of virtualization, the guest operating system is aware of the fact that it is running on the virtualized hardware and not on the bare hardware. In para-‐virtualization, the device drivers in the guest operating system coordinate the device drivers of host operating system and reduce the performance overheads. The use of para-‐virtualization [0] is intended to avoid the bottleneck associated with slow hardware interrupts that exist when full virtualization is employed. It has revealed [0] that para-‐ virtualization does not impose significant performance overhead in high performance computing, and this in turn this has implications for the use of cloud computing for hosting HPC applications. The “apparent” improvement in virtualization has led us to formulate the hypothesis that certain classes of HPC applications should be able to execute in a cloud environment, with minimal performance degradation. In order to support this hypothesis, first it is necessary to define exactly what is meant by a “class” of application, and secondly it will be necessary to observe application performance, both within a virtual machine and when executing on bare hardware. A further potential complication is associated with the need for Cloud service providers to support Service Level Agreements (SLA), so that system utilisation can be audited.
Resumo:
P-glycoproteins (p-gps) are ubiquitous membrane proteins from the ABC (ATP-binding cassette) family. They have been found in many animals, bacteria, plants and fungi and are extremely important in regulating a wide range of xenobiotics including pesticides. P-gps have been linked to xenobiotic resistance, most famously in resistance to cancer drug treatments. Their wide substrate range has led to what is known as "multidrug resistance", where resistance developed to one type of xenobiotic gives resistance to a different classes of xenobiotic. P-gps are a major contributor to drug resistance in mammalian tumours and infections of protozoan parasites such as Plasmodium and Leishmania. There is a growing body of literature suggesting that p-gps, and other ABC proteins, are important in regulating pesticide toxicity and represent potential control failure through the development of pesticide resistance, in both agricultural and medical pests. At the same time, aspects of their biochemistry offer new hope in pest control, in particular in furthering our understanding of toxicity and offering insights into how we can improve control without recourse to new chemical discovery. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.