104 resultados para Civil supremacy over the military.
Resumo:
Interdependency and Care over the Lifecourse draws upon theories of time and space to consider how informal care is woven into the fabric of everyday lives and is shaped by social and economic inequalities and opportunities. The book comprises three parts. The first explores contrasting social and economic contexts of informal care in different parts of the world. The second looks at different themes and dynamics of caring, using fictional vignettes of illness and health, child care, elderly care and communities of care. The book examines the significance to practices of care throughout the lifecourse of: understandings and expectations of care emotional exchanges involved in care memories and anticipations of giving and receiving care the social nature of the spaces and places in which care is carried out the practical time-space scheduling necessary to caring activities. Finally the authors critically examine how the frameworks of caringscapes and carescapes might be used in research, policy and practice. A working example is provided. This book will be of interest to students and researchers of care work, health and social care, geography, sociology of the family and social policy as well as those in business and policy communities trying to gain an understanding of how work and informal care interweave
Resumo:
The concept that open magnetic flux of the Sun (rooted with one and only one footpoint at the Sun) is a conserved quantity is taking root in the heliospheric community. Observations show that the Sun's open magnetic flux returns to the baseline from one solar minimum to the next. The temporary enhancement in the 1 AU heliospheric magnetic flux near solar maximum can be accounted for by the temporary creation of closed magnetic flux (with two footpoints at the Sun) during the ejection of coronal mass ejections (CMEs), which are more frequent near solar maximum. As a part of the International Heliophysical Year activities, this paper reviews two recently discussed consequences of open flux conservation: the reversal of open magnetic flux over the solar cycle driven by Coronal Mass Ejections and the impacts of open flux conservation on the global structure of the heliospheric magnetic field. These studies demonstrate the inherent linkages between coronal mass ejections, footpoint motions back at the Sun, and the global structure and evolution of the heliospheric magnetic field.
Resumo:
Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.
Resumo:
Mesoscale convective systems (MCSs) are relatively rare events in the UK but, when they do occur, can be associated with weather that is considered extreme with respect to climatology (as indicated by the number of such events that have been analysed as case studies). These case studies usually associate UK MCSs with a synoptic environment known as the Spanish plume. Here a previously published 17 year climatology of UK MCS events is extended to the present day (from 1998 to 2008) and these events classified according to the synoptic environment in which they form. Three distinct synoptic environments have been identified, here termed the classical Spanish plume, modified Spanish plume, and European easterly plume. Detailed case studies of the two latter, newly defined, environments are presented. Composites produced for each environment further reveal the differences between them. The classical Spanish plume is associated with an eastward propagating baroclinic cyclone that evolves according to idealised life cycle 1. Conditional instability is released from a warm moist plume of air advected northeastwards from Iberia that is capped by warmer, but very dry air, from the Spanish plateau. The modified Spanish plume is associated with a slowly moving mature frontal system associated with a forward tilting trough (and possibly cut-off low) at 500 hPa that evolves according to idealised life cycle 2. As in the classical Spanish plume, conditional instability is released from a warm plume of air advected northwards from Iberia. The less frequent European easterly plume is associated with an omega block centred over Scandinavia at upper levels. Conditional instability is released from a warm plume of air advected westwards across northern continental Europe. Unlike the Spanish plume environments, the European easterly plume is not a warm sector phenomena associated with a baroclinic cyclone. However, in all environments the organisation of convection is associated with the interaction of an upper-level disturbance with a low-level region of warm advection.
Resumo:
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
Resumo:
Objectives: To investigate people's views about the efficacy and specific risks of herbal, over-the-counter (OTC) conventional, and prescribed conventional medicines, and their likelihood of taking a second (herbal or OTC conventional) product in addition to a prescribed medicine. Methods: Experiment 1 (1 factor within-participant design); Experiment 2 (1 factor between-participant design). Convenience samples of general population were given a hypothetical scenario and required to make a number of judgements. Results: People believed herbal remedies to be less effective, but less risky than OTC and prescribed conventional medicines. Herbal medicines were not seen as being safer simply because of their easier availability. Participants indicated that they would be more likely to take a herbal medicine than a conventional OTC medicine in addition to a prescribed medicine, and less likely to consult their doctor in advance. Conclusion: People believe that herbal medicines are natural and relatively safe and can be used with less caution. People need to be given clear information about the risks and benefits of herbal medicines if they are to use such products safety and effectively. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A study examined people's interpretation of European Commission (EC) recommended verbal descriptors for risk of medicine side effects, and actions to take if they do occur. Members of the general public were presented with a fictitious (but realistic) scenario about suffering from a stiff neck, visiting the local pharmacy and purchasing an over the counter (OTC) medicine (Ibruprofen). The medicine came with an information leaflet which included information about the medicine's side effects, their risk of occurrence, and recommended actions to take if adverse effects are experienced. Probability of occurrence was presented numerically (6%) or verbally, using the recommended EC descriptor (common). Results showed that, in line with findings of our earlier work with prescribed medicines, participants significantly overestimated side effect risk. Furthermore, the differences in interpretation were reflected in their judgements of satisfaction, side effect severity, risk to health, and intention to take the medicine. Finally, we observed no significant difference between people's interpretation of the recommended action descriptors ('immediately' and 'as soon as possible'). (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Easterly waves (EWs) are prominent features of the intertropical convergence zone (ITCZ), found in both the Atlantic and Pacific during the Northern Hemisphere summer and fall, where they commonly serve as precursors to hurricanes over both basins.Alarge proportion of Atlantic EWs are known to form over Africa, but the origin of EWs over the Caribbean and east Pacific in particular has not been established in detail. In this study reanalyses are used to examine the coherence of the large-scale wave signatures and to obtain track statistics and energy conversion terms for EWs across this region. Regression analysis demonstrates that some EW kinematic structures readily propagate between the Atlantic and east Pacific, with the highest correlations observed across Costa Rica and Panama. Track statistics are consistent with this analysis and suggest that some individual waves are maintained as they pass from the Atlantic into the east Pacific, whereas others are generated locally in the Caribbean and east Pacific. Vortex anomalies associated with the waves are observed on the leeward side of the Sierra Madre, propagating northwestward along the coast, consistent with previous modeling studies of the interactions between zonal flow and EWs with model topography similar to the Sierra Madre. An energetics analysis additionally indicates that the Caribbean low-level jet and its extension into the east Pacific—known as the Papagayo jet—are a source of energy for EWs in the region. Two case studies support these statistics, as well as demonstrate the modulation of EW track and storm development location by the MJO.
Resumo:
Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.