100 resultados para Chlorine compounds.
Resumo:
In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS(center dot+) [ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] decolorization assay and the oxygen radical absorbance capacity assay (ORAC) were used to assess the capacity of coffee compounds to scavenge free radicals. The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown. Colonic metabolites such as m-coumaric acid and dihydroferulic acid showed high antioxidant activity. The ability of these compounds to protect human low-density lipoprotein (LDL) oxidation by copper and 2,2'-azobis(2-amidinopropane) dihydrochloride was also explored. 1-Methyluric acid was particularly effective at inhibiting LDL oxidative modification. Different experiments showed that this caffeine metabolite is not incorporated into LDL particles. However, at physiologically relevant concentrations, it was able to delay for more than 13 h LDL oxidation by copper.
Resumo:
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.
Resumo:
Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary components that are able to inhibit platelet function and therefore decrease the risk of cardiovascular disease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including a group of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5 d. Platelet aggregation and plasma flavonols were measured at baseline and after 5 d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compounds on platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.
Resumo:
Treatment of [UO2(OTf)(2)] or [UO2I2(thf)(3)] with 1 equiv. of CyMe4BTBP in anhydrous acetonitrile led to the formation of [UO2(CyMe4BTBP)(OTf)(2)] (1) and [UO2(CyMe4BTBP)I-2] (2) which crystallized as the cationic forms [UO2(CyMe4BTBP)(py)][OTf](2) (3) and [UO2I(CyMe4BTBP)][I] (4) in pyridine and acetonitrile, respectively. These compounds are unique examples of structurally characterized actinide complexes with a BTBP molecule; this ligand adopts a planar conformation in the equatorial plane of the {UO2}(2+) ion. In pyridine, 1 is dissociated into [UO2(OTf)(2)(PY)(3)] and free CyMe4BTBP and the thermodynamic parameters (K, Delta H, Delta S) of this equilibrium have been determined by H-1 NMR spectroscopy. The ethoxide derivative [UO2(OEt)(CyMe4BTBP)][OTf] (5) crystallized from a solution of I in a mixture of ethanol and acetone under air, and the dinuclear mu-oxo complex [{UO2(CyMe4BTBP)}(2)(mu-O)][I](2) (6) was obtained from [UO2I(thf)(2.7)] and CyMe4BTBP. The crystal structures of 6 and of the analogous derivatives [{UO2(py)(4)}(2)(mu-O)][I](2)(7) and [{UO2(TPTZ)(py)}(2)(mu-O)][I-3](2)(8) exhibit a flexible [{UO2}-O-{UO2}](2+) moiety.
Resumo:
A novel, pyrene-functionalised copolymer has been synthesised in a single step via imidisation of poly(maleic anhydride-alt-1-octadecene) with 1-pyrenemethylamine, and its potential for the detection of volatile nitro aromatic compounds (NACs) evaluated. The new copolymer forms complexes in solution with NACs such as 2,5-dinitrobenzonitrile, as shown by H-1 NMR, UV-vis and fluorescence spectroscopy. Moreover, thin films of this copolymer, cast from THF solution, undergo almost instantaneous fluorescence quenching when exposed to the vapour of 2,5-dinitrobenzonitrile (a model for TNT) at ambient temperatures and pressures.
Resumo:
Ab initio calculations using density functional theory have shown that the reactions that occur between artemisinin, 1, a cyclic trioxane active against malaria, and some metal ions and complexes lead to a series of radicals which are probably responsible for its therapeutic activity. In particular it has been shown that the interaction of Fe(H) with artemisinin causes the O-O bond to be broken as indeed does Fe(III) and Cu(I), while Zn(II) does not. Calculations were carried out with Fe(II) in several different forms including the bare ion, [Fe(H2O)(5)](2+) and [FeP(Im)] (P, porphyrin; Im, imadazole) and similar results were obtained. The resulting oxygen-based radicals are readily converted to more stable carbon-based radicals and/or. stable products. Similar radicals and products are also formed from two simple model trioxanes 2 and 3 that show little or no therapeutic action against malaria although some subtle differences were obtained. This suggests that the scaffold surrounding the pharmacophore may be involved in molecular recognition events allowing efficient uptake of this trioxane warhead into the parasite. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The absorption cross-sections of Cl2O6 and Cl2O4 have been obtained using a fast flow reactor with a diode array spectrometer (DAS) detection system. The absorption cross-sections at the wavelengths of maximum absorption (lambda(max)) determined in this study are those of Cl2O6: (1.47 +/- 0.15) x 10(-17) cm(2) molecule(-1), at lambda(max) = 276 nm and T = 298 K; and Cl2O4: (9.0 +/- 2.0) x 10(-19) cm(2) molecule(-1), at lambda(max) = 234 nm and T = 298 K. Errors quoted are two standard deviations together with estimates of the systematic error. The shapes of the absorption spectra were obtained over the wavelength range 200-450 nm for Cl2O6 and 200-350 nm for Cl2O4, and were normalized to the absolute cross-sections obtained at lambda(max) for each oxide, and are presented at 1 nm intervals. These data are discussed in relation to previous measurements. The reaction of O with OCIO has been investigated with the objective of observing transient spectroscopic absorptions. A transient absorption was seen, and the possibility is explored of identifying the species with the elusive sym-ClO3 or ClO4, both of which have been characterized in matrices, but not in the gas-phase. The photolysis of OCIO was also re-examined, with emphasis being placed on the products of reaction. UV absorptions attributable to one of the isomers of the ClO dimer, chloryl chloride (ClClO2) were observed; some Cl2O4 was also found at long photolysis times, when much of the ClClO2 had itself been photolysed. We suggest that reports of Cl2O6 formation in previous studies could be a consequence of a mistaken identification. At low temperatures, the photolysis of OCIO leads to the formation of Cl2O3 as a result of the addition of the ClO primary product to OCIO. ClClO2 also appears to be one product of the reaction between O-3 and OCIO, especially when the reaction occurs under explosive conditions. We studied the kinetics of the non-explosive process using a stopped-flow technique, and suggest a value for the room-temperature rate coefficient of (4.6 +/- 0.9) x 10(-19) cm(3) molecule(-1) s(-1) (limit quoted is 2sigma random errors). The photochemical and thermal decomposition of Cl2O6 is described in this paper. For photolysis at k = 254 nm, the removal of Cl2O6 is not accompanied by the build up of any other strong absorber. The implications of the results are either that the photolysis of Cl2O6 produces Cl-2 directly, or that the initial photofragments are converted rapidly to Cl-2. In the thermal decomposition of Cl2O6, Cl2O4 was shown to be a product of reaction, although not necessarily the major one. The kinetics of decomposition were investigated using the stopped-flow technique. At relatively high [OCIO] present in the system, the decay kinetics obeyed a first-order law, with a limiting first-order rate coefficient of 0.002 s(-1). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The gas-phase reactions of ozone with unsaturated hydrocarbons are significant sources of free radical species (including (OH)-O-center dot) and particulate material in the Earth's atmosphere. In this tutorial review, the kinetics, products and mechanisms of these reactions are examined, starting with a discussion of the original mechanism proposed by Criegee and following with a summary presentation of the complex, free radical-mediated reactions of carbonyl oxide (Criegee) intermediates. The contribution of ozone-terpene reactions to the atmospheric burden of secondary organic aerosol material is also discussed from the viewpoint of the formation of non-volatile organic acid products from the complex chemistry of ozone with alpha-pinene. Throughout the article, currently accepted understanding is supported through the presentation of key experimental results, and areas of persistent or new uncertainty are highlighted.
Resumo:
Carbamoyl methyl pyrazole compound of palladium(II) chloride of the type [PdCl2L2] (where L = C5H7N2CH2CON(C4H9)(2), C5H7N2CH2CON((C4H9)-C-i)(2), C3H3N2CH2CON(C4H9)(2), or C3H3N2CH2CON((C4H9)-C-i)(2)) has been synthesized and characterized by IR and H-1 NMR spectroscopy. The structure of the compound [PdCl2{(C3H3N2CH2CONBu2}2)-Bu-i] has been determined by single crystal X-ray diffraction and shows that the ligands are bonded through the soft pyrazolyl nitrogen atom to the palladium(II) chloride in a trans disposition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.
Resumo:
The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.
Resumo:
Several simple gold compounds and their physical mixtures with TiO2 Were tested for low temperature CO oxidation. No true catalytic activity was found for gold precursors on their own, although both Au2O3 and Au(OH)(3) react well with CO even at room temperature in a non-catalytic manner. Despite that catalytic activity was obtained by physically mixing Au(OH)(3) or Au2O3 with TiO2 and the results further emphasise the importance of a good contact between the gold and the support for good CO oxidation activity. (c) 2005 Published by Elsevier.
Resumo:
A simple general route of obtaining very stable octacoordinated non-oxovanadium( IV) complexes of the general formula VL2 (where H2L is a tetradentate ONNO donor) is presented. Six such complexes (1-6) are adequately characterized by elemental analysis, mass spectrometry, and various spectroscopic techniques. One of these compounds (1) has been structurally characterized. The molecule has crystallographic 4 symmetry and has a dodecahedral structure existing in a tetragonal space group P4n2. The non-oxo character and VL2 stoichiometry for all of the complexes are established from analytical and mass spectrometric data. In addition, the non-oxo character is clearly indicated by the complete absence of the strong nu(v=o) band in the 925-1025 cm(-1) region, which is a signature of all oxovanadium species. The complexes are quite stable in open air in the solid state and in solution, a phenomenon rarely observed in non-oxovanadium(IV) or bare vanadium(IV) complexes.