113 resultados para Chiral recognition
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
The selective reduction of one of the three carboxyl groups of two chiral citric acid derivatives to the corresponding aldehydes, under Rosenmund conditions, are reported together with the application of these aldehydes to the syntheses of the ester side chains of some potently antileukemic Cephalotaxus alkaloids e.g. anhydroharringtonine.
Resumo:
Intertwining triple helical nanofibers with an overall handedness have been formed from self-assembling chiral benzene-1,3,5-tricarboxamides 1, 2 and 3, whereas the achiralbenzene-1,3,5-tricarboxamide 4 upon self-association gives rise to straight nanofibers without any twist and transmission electron microscopy images of chiral compounds clearly demonstrate that the handedness of the triple helical nanofibers can be reversed by using the enantiomeric benzene-1,3,5-tricarboxamide building blocks.
Resumo:
Planning a Holliday: A new mode of binding to a stacked-X, four-way Holliday junction is described in which a chromophore molecule binds across the center of the junction and two adenine residues are replaced by the acridine chromophores at either side of the crossover. This binding mode is specific for the Holliday junction and does not cause unwinding of the DNA helices.
Resumo:
Specific monomer sequences in aromatic copolyimides are recognized through their -stacking and hydrogen-bonding interactions with a sterically and electronically complementary molecular tweezer. These interactions enable the tweezer molecule to read monomer sequences comprising up to 27 aromatic rings by multiple adjacent binding to neighboring sites on the polymer chain.
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
Pyrene-based molecular tweezers show sequence-specific binding to aromatic polyimides through sterically-controlled donor-acceptor pi-stacking and hydrogen bonding; H-1 NMR spectra of tweezer-complexes with polyimides having different sequence-restrictions show conclusively that the detection of long range sequence-information results from multiple tweezer-binding at adjacent imide residues.
Resumo:
The chiral stabilised azomethine ylide formed from condensation of the dimethyl acetal of acetone with (5S)-5-phenylmorpholinone undergoes stereoselective exo-cycloaddition reactions with a range of doubly and singly activated dipolarophiles when generated in the presence of excess (MgBr2OEt2)-O-.. The cycloadducts can be degraded to yield enantiomerically pure proline derivatives.
Resumo:
We report herein the first synthesis of chiral derivatives possessing the 1,4-thiazinone core. As predicted, the thiolactone is more susceptible to nucleophilic attack than the equivalent lactone system.
Resumo:
The preparation of enantiomerically pure threo-beta-amino-alpha-hydroxy acids via 1,3-dipolar cycloadditions of imine dipolarophiles with the chiral isomunchnone derived from (5R)-5-phenylmorpholin-3-one 1 is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subsequent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-beta-amino-alpha-hydroxy acids with recovery of the initial chiral auxiliary. (C) 2009 Published by Elsevier Ltd.
Resumo:
Intrinsically chiral metal and mineral surfaces show enantioselective behaviour without modifiers. Examples are artificial high-Miller-index surfaces of metal single crystals with cubic bulk lattice symmetry, which have no mirror planes and are therefore chiral, or surfaces of naturally occurring crystallites of some common minerals, such as alpha-quartz or calcite. Recent findings with regards to the surface geometry, reactivity and thermal stability of intrinsically chiral surfaces are discussed. A number of enantioselective effects have been reported in connection with the adsorption of small chiral molecules (e.g. alanine, cysteine) on intrinsically chiral surfaces under well-defined conditions. From a combination of experimental surface science techniques and theoretical ab initio model calculations it emerges that these effects are due to a combination of attractive and repulsive adsorbate-substrate and inter-adsorbate interactions.
Resumo:
Chiral polyaromatic amide dendrimers incorporating a C-3-core have been prepared as potential catalysts for asymmetric reactions. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.
Resumo:
The aza-Darzens ('ADZ') reactions of N-diphenylphosphinyl ('N-Dpp') imines with chiral enolates derived from N-bromoacetyl 2S-2,10-camphorsultam proceed in generally good yield to give N-diphenylphosphinyl aziridinoyl sultams. However, the stereoselectivity of the reaction is dependent upon the structure of the imine substituent: when the chiral enolate was reacted with arylimines substituted in the ortho-position, mixtures of cis- and trans-2'R,3'R-aziridines were obtained, often with a complete selectivity in favour of the trans-isomer. (c) 2006 Elsevier Ltd. All rights reserved.