69 resultados para Chemicals.
Resumo:
The requirement to rapidly and efficiently evaluate ruminant feedstuffs places increased emphasis on in vitro systems. However, despite the developmental work undertaken and widespread application of such techniques, little attention has been paid to the incubation medium. Considerable research using in vitro systems is conducted in resource-poor developing countries that often have difficulties associated with technical expertise, sourcing chemicals and/or funding to cover analytical and equipment costs. Such limitations have, to date, restricted vital feed evaluation programmes in these regions. This paper examines the function and relevance of the buffer, nutrient, and reducing solution components within current in vitro media, with the aim of identifying where simplification can be achieved. The review, supported by experimental work, identified no requirement to change the carbonate or phosphate salts, which comprise the main buffer components. The inclusion of microminerals provided few additional nutrients over that already supplied by the rumen fluid and substrate, and so may be omitted. Nitrogen associated with the inoculum was insufficient to support degradation and a level of 25 mg N/g substrate is recommended. A sulphur inclusion level of 4-5 mg S/g substrate is proposed, with S levels lowered through omission of sodium sulphide and replacement of magnesium sulphate with magnesium chloride. It was confirmed that a highly reduced medium was not required, provided that anaerobic conditions were rapidly established. This allows sodium sulphide, part of the reducing solution, to be omitted. Further, as gassing with CO2 directly influences the quantity of gas released, it is recommended that minimum CO, levels be used and that gas flow and duration, together with the volume of medium treated, are detailed in experimental procedures. It is considered that these simplifications will improve safety and reduce costs and problems associated with sourcing components, while maintaining analytical precision. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The widespread occurrence of feminized male fish downstream of some wastewater treatment works has led to substantial interest from ecologists and public health professionals. This concern stems from the view that the effects observed have a parallel in humans, and that both phenomena are caused by exposure to mixtures of contaminants that interfere with reproductive development. The evidence for a "wildlife-human connection" is, however, weak: Testicular dysgenesis syndrome, seen in human males, is most easily reproduced in rodent models by exposure to mixtures of antiandrogenic chemicals. In contrast, the accepted explanation for feminization of wild male fish is that it results mainly from exposure to steroidal estrogens originating primarily from human excretion. OBJECTIVES: We sought to further explore the hypothesis that endocrine disruption in fish is multi-causal, resulting from exposure to mixtures of chemicals with both estrogenic and antiandrogenic properties. METHODS: We used hierarchical generalized linear and generalized additive statistical modeling to explore the associations between modeled concentrations and activities of estrogenic and antiandrogenic chemicals in 30 U.K. rivers and feminized responses seen in wild fish living in these rivers. RESULTS: In addition to the estrogenic substances, antiandrogenic activity was prevalent in almost all treated sewage effluents tested. Further, the results of the modeling demonstrated that feminizing effects in wild fish could be best modeled as a function of their predicted exposure to both anti-androgens and estrogens or to antiandrogens alone. CONCLUSION: The results provide a strong argument for a multicausal etiology of widespread feminization of wild fish in U.K. rivers involving contributions from both steroidal estrogens and xeno-estrogens and from other (as yet unknown) contaminants with antiandrogenic properties. These results may add farther credence to the hypothesis that endocrine-disrupting effects seen in wild fish and in humans are caused by similar combinations of endocrine-disrupting chemical cocktails.
Resumo:
Plants can respond to damage by pests with both induced direct defences and indirect defences by the attraction of their natural enemies. Foliar application of several plant-derived chemicals, such as salicylic acid and oxalic acid, can induce these defence mechanisms. The effect of acetylsalicylic acid and oxalic acid on the aphid Myzus persicae Sulzer (Homoptera: Aphididae) and its parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae) was investigated. Experiments were carried out with direct application of acetylsalicylic and oxalic acids on these insects, as well as choice and no-choice tests using foliar application of both chemicals on Brussels sprouts plants, Brassica oleracea var. gemmifera L. (Brassicaceae). Parasitoids were given a choice between treated and untreated plants for oviposition, and the effects of the chemicals on aphid and parasitoid development were determined. Although direct application of both chemicals increased aphid mortality, their foliar application did not induce resistance against aphids. The foliar application of such compounds, even in low concentration as shown in the choice tests, has the potential to induce indirect plant defences against aphids by encouraging aphid parasitisation. Although the direct application of both chemicals reduced parasitoid emergence from their hosts, the foliar application of acetylsalicylic acid and low concentrations of oxalic acid did not have a negative effect on parasitoid emergence ability. However, 10 mm oxalic acid reduced the number of emerged parasitoids in no-choice experiments. This study shows that foliar application of acetylsalicylic and oxalic acids has the potential to encourage aphid parasitisation, but care is needed as high concentrations of oxalic acid can have a negative effect on these beneficial organisms.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
1. Insect predators often aggregrate to patches of high prey density and use prey chemicals as cues for oviposition. If prey have mutualistic guardians such as ants, however, then these patches may be less suitable for predators. 2. Ants often tend aphids and defend them against predators such as ladybirds. Here, we show that ants can reduce ladybird performance by destroying eggs and physically attacking larvae and adults. 3. Unless ladybirds are able to defend against ant attacks they are likely to have adaptations to avoid ants. We show that Adalia bipunctata ladybirds not only move away from patches with Lasius niger ants, but also avoid laying eggs in these patches. Furthermore, ladybirds not only respond to ant presence, but also detect ant semiochemicals and alter oviposition strategy accordingly. 4. Ant semiochemicals may signal the extent of ant territories allowing aphid predators to effectively navigate a mosaic landscape of sub-optimal patches in search of less well-defended prey. Such avoidance probably benefits both ants and ladybirds, and the semiochemicals could be regarded as a means of cooperative communication between enemies. 5. Overall, ladybirds respond to a wide range of positive and negative oviposition cues that may trade-off with each other and internal motivation to determine the overall oviposition strategy.
Resumo:
Some organisms can manipulate the nervous systems of others or alter their physiology in order to obtain benefit. Ants are known to limit alate aphid dispersal by physically removing wings and also through chemical manipulation of the alate developmental pathway. This results in reduced dispersal and higher local densities of aphids, which benefit ants in terms of increased honeydew and prey availability. Here, we show that the walking movement of mutualistic apterous aphids is also reduced by ant semiochemicals. Aphids walk slower and their dispersal from an unsuitable patch is hampered by ants. If aphid walking dispersal has evolved as a means of natural enemy escape, then ant chemicals may act as a signal indicating protection; hence, reduced dispersal could be adaptive for aphids. If, however, dispersal is primarily a means to reduce competition or to maintain persistent metapopulations, then manipulation by ants could be detrimental. Such manipulation strategies, common in host-parasite and predator-prey interactions, may be more common in mutualism than expected.
Resumo:
The established role of oestrogen in the development and progression of breast cancer raises questions concerning a potential contribution from the many chemicals in the environment which can enter the human breast and which have oestrogenic activity. A range of organochlorine pesticides and polychlorinated bipheryls possess oestrogen-mimicking properties and have been measured in human breast adipose tissue and in human milk. These enter the breast from varied environmental contamination of food, water and air, and due to their lipophilic properties can accumulate in breast fat. However, it is emerging that the breast is also exposed to a range of oestrogenic chemicals applied as cosmetics to the underarm and breast area. These cosmetics are left on the skin in the appropriate area, allowing a more direct dermal absorption route for breast exposure to oestrogenic chemicals and allowing absorbed chemicals to escape systemic metabolism. This review considers evidence in support of a functional role for the combined interactions of cosmetic chemicals with environmental oestrogens, pharmacological oestrogens, phyto-oestrogens and physiological oestrogens in the rising incidence of breast cancer.
Resumo:
Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metal I oestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Groundwater is an important resource in the UK, with 45% of public water supplies in the Thames Water region derived from subterranean sources. In urban areas, groundwater has been affected by onthropogenic activities over 0 long period of time and from a multitude of sources, At present, groundwater quality is assessed using a range of chemical species to determine the extent of contamination. However, analysing a complex mixture of chemicals is time-consuming and expensive, whereas the use of an ecotoxicity test provides information on (a) the degree of pollution present in the groundwater and (b) the potential effect of that pollution. Microtox (TM), Eclox (TM) and Daphnia magna microtests were used in conjunction with standard chemical protocols to assess the contamination of groundwaters from sites throughout the London Borough of Hounslow and nearby Heathrow Airport. Because of their precision, range of responses and ease of use, Daphnia magna and Microfox (TM) tests are the bioassays that appear to be most effective for assessing groundwater toxicity However, neither test is ideal because it is also essential to monitor water hardness. Eclox (TM) does not appear to be suitable for use in groundwater-quality assessment in this area, because it is adversely affected by high total dissolved solids and electrical conductivity.
Resumo:
We are experiencing an explosion of knowledge with relevance to conserving biodiversity and protecting the environment necessary to sustain life on earth. Many science disciplines are involved in generating this ne, knowledge and real progress can be made when scientists collaborate across disciplines to generate both macro- and micro-environmental knowledge and then communicate and interact with specialists in sociology, economics and public policy. An important requirement is that the often complex scientific concepts and their voluminous supporting data are managed in such ways as to make them accessible across the many specializations involved. Horticultural science has much to contribute to the knowledge base for environmental conservation. While it seems that production horticulture has been slow to embrace knowledge and concepts that would reduce the heavy reliance on agricultural chemicals, the use of peat as a growing medium, and lead to more sustainable use of water and other resources, environmental horticulture is providing valuable opportunities to rescue or protect endangered species, educate the public about plants and plant science, and demonstrate environmental stewardship and sustainable production practices. Likewise, social horticulture is drawing, attention to the many contributions of horticultural foods and parks and gardens to human health and welfare. Overall, horticulture has a vital role to play in integrating, knowledge from other scientific, social, economic and political disciplines.
Resumo:
Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.
Resumo:
A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.
Resumo:
Although risk factors are known to include the loss of function of the susceptibility genes BRCA1/BRCA2 and lifetime exposure to oestrogen, the main causative agents in breast cancer remain unaccounted for. It has been suggested recently that underarm cosmetics might be a cause of breast cancer, because these cosmetics contain a variety of chemicals that are applied frequently to an area directly adjacent to the breast. The strongest supporting evidence comes from unexplained clinical observations showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast, just the local area to which these cosmetics are applied. A biological basis for breast carcinogenesis could result from the ability of the various constituent chemicals to bind to DNA and to promote growth of the damaged cells. Multidisciplinary research is now needed to study the effect of long-term use of the constituent chemicals of underarm cosmetics, because if there proves to be any link between these cosmetics and breast cancer then there might be options for the prevention of breast cancer. Copyright D 2003 John Wiley Sons, Ltd.
Resumo:
Cytochrome P450 activity in individual Chironomus riparius larvae was measured using a microtiter plate adaptation of the ethoxyresorufin-O-deethylase (EROD) assay. The sensitivity of this biomarker was tested by exposing larvae to phenobarbital (0.5 and 1.0 mM) and permethrin (1 and 10 mug/g). Both chemicals induced EROD activity in C. riparius larvae by up to 1.58-fold with PB and 2.47-fold with permethrin. EROD induction was more pronounced after 48 h. The initially high EROD activity in the controls suggested that P450s are induced by stress. Feeding levels prior to exposure also had a significant effect on EROD activity. EROD activity compared to the control was highest when larvae were fed double the normal ration. These results indicate that EROD activity in individual C. riparius may be a useful biomarker to add to a suite of biomarkers for the detection of freshwater pollution. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.