111 resultados para Chemical reactors -- Design and construction
Resumo:
The effects and influence of the Building Research Establishment’s Environmental Assessment Methods (BREEAM) on construction professionals are examined. Most discussions of building assessment methods focus on either the formal tool or the finished product. In contrast, BREEAM is analysed here as a social technology using Michel Foucault’s theory of governmentality. Interview data are used to explore the effect of BREEAM on visibilities, knowledge, techniques and professional identities. The analysis highlights a number of features of the BREEAM assessment process which generally go unremarked: professional and public understandings of the method, the deployment of different types of knowledge and their implication for the authority and legitimacy of the tool, and the effect of BREEAM on standard practice. The analysis finds that BREEAM’s primary effect is through its impact on standard practices. Other effects include the use of assessment methods to defend design decisions, its role in both operationalizing and obscuring the concept of green buildings, and the effect of tensions between project and method requirements for the authority of the tool. A reflection on assessment methods as neo-liberal tools and their adequacy for the promotion of sustainable construction suggests several limitations of lock-in that hinder variation and wider systemic change.
Resumo:
How does the work of designers impact on the safety of operatives at the construction site? Safety research and policy emphasize the importance of designing for safe construction, yet the interface between design and construction is poorly understood: accidents have multiple causes making it hard to establish causal links between design choices and safety outcomes. An in-depth case study of a major station project examines how professionals on the construction site perceive and manage the safety challenges of a building design. Analyses reveal understandings that, on the project studied, design has an impact on safety because of: (1) the timing of design work, where the volume of late design changes increased the difficulty of planning safe procedures, e.g. for working at height, lifting heavy items, refurbishing and demolishing old buildings; and (2) inputs from design stakeholders with insufficient practical knowledge of construction and operation required unplanned work-arounds, e.g. to coordinate different sub-systems, provide maintenance access, and manage loads during construction. These findings suggest that safety suffers where projects are under-designed, and that alongside regulation, there is a need for robust management attention to the contractual structures, incentives, processes and tools that enable clients and designers to understand material practices of construction and operation.
Resumo:
This paper explores the mapping of the environmental assessment process onto design and construction processes. A comparative case study method is used to identify and account for variations in the ‘fit’ between these two processes. The analysis compares eight BREEAM projects (although relevant to LEED, GreenStar, etc.) and distinguishes project-level characteristics and dynamics. Drawing on insights from literature on sustainable construction and assessment methods, an analytic framework is developed to examine the effect of clusters of project and assessment level elements on different types of fit (tight, punctual and bolt-on). Key elements distinguishing between types include: prior working experience with project team members, individual commitment to sustainable construction, experience with sustainable construction, project continuity, project-level ownership of the assessment process, and the nature and continuity of assessor involvement. Professionals with ‘sustainable’ experience used BREEAM judiciously to support their designs (along with other frameworks), but less committed professionals tended to treat it purely as an assessment method. More attention needs to be paid to individual levels of engagement with, and understanding of, sustainability in general (rather than knowledge of technical solutions to individual credits), to ownership of the assessment process and to the potential effect of discontinuities at the project level on sustainable design.
Resumo:
he construction market around the world has witnessed the growing eminence of construction professional services (CPSs), such as urban planning, architecture, engineering, and consultancy, while the traditional contracting sector remains strong. Nowadays, it is not uncommon to see a design firm taking over the work of a traditional main contractor, or vice versa, of overseeing the delivery of a project. Although the two sectors of contracting and CPS share the same purpose of materializing the built environment, they are as different as they are interrelated. Much has been mentioned about the nexus between the two but little has been done to articulate it using empirical evidence. This study examined the nexus between contracting and CPS businesses by offering and testing lead-lag effects between the two sectors in the international market. A longitudinal panel data composed of 23 top international contractors and CPS firms was adopted. Surprisingly, results of the panel data analyses show that CPS business does not have a significant positive causal effect on contracting as a downstream business, and vice versa. CPS and contracting subsidiaries, although within the same company, do not necessarily form a consortium to undertake the same project; rather, they often collaborate with other CPS or contracting counterparts to undertake projects. This paper provides valuable insights into the sophisticated nexus between contracting and CPS in the international construction market. It will support business executives’ rational decision making for selecting proper contracting or CPS allies, or a proper mergers and acquisitions strategy in the international market. The paper also provides a fresh perspective through which researchers can better investigate the diversification strategies adopted by international contracting and CPS firms.
Resumo:
Purpose – Construction projects usually suffer delays, and the causes of these delays and its cost overruns have been widely discussed, the weather being one of the most recurrent. The purpose of this paper is to analyze the influence of climate on standard construction work activities through a case study. Design/methodology/approach – By studying the extent at which some weather variables impede outdoor work from being effectively executed, new maps and tables for planning for delays are presented. In addition, a real case regarding the construction of several bridges in southern Chile is analyzed. Findings – Few studies have thoroughly addressed the influences of major climatic agents on the most common outdoor construction activities. The method detailed here provides a first approximation for construction planners to assess to what extent construction productivity will be influenced by the climate. Research limitations/implications – Although this study was performed in Chile, the simplified method proposed is entirely transferable to any other country, however, other weather or combinations of weather variables could be needed in other environments or countries. Practical implications – The implications will help reducing the negative social, economic and environmental outcomes that usually emerge from project delays. Originality/value – Climatic data were processed using extremely simple calculations to create a series of quantitative maps and tables that would be useful for any construction planner to decide the best moment of the year to start a project and, if possible, where to build it.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes and analyses the experience of designing, installing and evaluating a farmer-usable touch screen information kiosk on cattle health in a veterinary institution in Pondicherry. The contents of the kiosk were prepared based on identified demands for information on cattle health, arrived at through various stakeholders meetings. Information on these cattle diseases and conditions affecting the livelihoods of the poor was provided through graphics, text and audio back-up, keeping in mind the needs of landless and illiterate poor cattle owners. A methodology for kiosk evaluation based on the feedback obtained from kiosk facilitator, critical group reflection and individual users was formulated. The formative evaluation reveals the potential strength this ICT has in transferring information to the cattle owners in a service delivery centre. Such information is vital in preventing diseases and helps cattle owners to present and treat their animals at an early stage of disease condition. This in turn helps prevent direct and indirect losses to the cattle owners. The study reveals how an information kiosk installed at a government institution as a freely accessible source of information to all farmers irrespective of their class and caste can help in transfer of information among poor cattle owners, provided periodic updating, interactivity and communication variability are taken care of. Being in the veterinary centre, the kiosk helps stimulate dialogue, and facilitates demand of services based on the information provided by the kiosk screens.
Resumo:
Pharmacogenetic trials investigate the effect of genotype on treatment response. When there are two or more treatment groups and two or more genetic groups, investigation of gene-treatment interactions is of key interest. However, calculation of the power to detect such interactions is complicated because this depends not only on the treatment effect size within each genetic group, but also on the number of genetic groups, the size of each genetic group, and the type of genetic effect that is both present and tested for. The scale chosen to measure the magnitude of an interaction can also be problematic, especially for the binary case. Elston et al. proposed a test for detecting the presence of gene-treatment interactions for binary responses, and gave appropriate power calculations. This paper shows how the same approach can also be used for normally distributed responses. We also propose a method for analysing and performing sample size calculations based on a generalized linear model (GLM) approach. The power of the Elston et al. and GLM approaches are compared for the binary and normal case using several illustrative examples. While more sensitive to errors in model specification than the Elston et al. approach, the GLM approach is much more flexible and in many cases more powerful. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.
Resumo:
Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.