67 resultados para Chaotic synchronization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticipating synchronization has been recently proposed as a mechanism of interaction in dynamical systems which are able to bring about predictions of future states of a driver system. We suggest that an interesting insight into the anticipating synchronization can be obtained by the renormalization of the time scale in the driven system. Our approach directly links the feedback delay of the driven system with the renormalized time scale of the driven system, identifying the main component in the anticipating synchronization paradigm and suggesting an alternative method to generate the anticipating and the lagging synchronization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key concern for conservation biologists is whether populations of plants and animals are likely to fluctuate widely in number or remain relatively stable around some steady-state value. In our study of 634 populations of mammals, birds, fish and insects, we find that most can be expected to remain stable despite year to year fluctuations caused by environmental factors. Mean return rates were generally around one but were higher in insects (1.09 +/- 0.02 SE) and declined with body size in mammals. In general, this is good news for conservation, as stable populations are less likely to go extinct. However, the lower return rates of the large mammals may make them more vulnerable to extinction. Our estimates of return rates were generally well below the threshold for chaos, which makes it unlikely that chaotic dynamics occur in natural populations - one of ecology's key unanswered questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many applications, there is a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two maps through which it highlights the importance of providing evidence of convergence of Lyapunov exponent estimates. The results suggest cautious conclusions when confronted with real data. Moreover, the maps are interesting in their own right.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaeological research has addressed imperial frontiers for more than a century. Romanists, in particular, have engaged in exploring frontiers from economic, militaristic, political, and (more recently) social vantages. This article suggests that we also consider the dialogue between space and social perception to understand imperial borderland developments. In addition to formulating new theoretical approaches to frontiers, this contribution represents the first comprehensive overview of both the documentary sources and the archaeological material found in Egypt's Great Oasis during the Roman period (ca. 30 B.C.E. to the sixth century C.E.). A holistic analysis of these sources reveals that Egypt's Great Oasis, which consisted of two separate but linked oases, served as a conceptual, physical, and human buffer zone for the Roman empire. This buffer zone protected the "ordered" Nile Valley inhabitants from the "chaotic" desert nomads, who lived just beyond the oases. This conclusion suggests that nomads required specific imperial frontier policies and that these policies may have been ideological as well as economic and militaristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large proportion of international real estate investment is concentrated in the office markets of the world’s largest cities. However, many of these global cities are also key financial services centres, highlighting the possibility of reduced economic diversification from an investor’s perspective. This paper assesses the degree of synchronization in cycles across twenty of the world’s largest office markets, finding evidence of significant concordance across a large number of markets. The results highlight the problems associated with commonalities in the underlying economic bases of the markets. The concentration of investment also raises the possibility of common flow of funds effects that may further reduce diversification opportunities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.