98 resultados para Carter, Rosalynn , American


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A double minimum six-dimensional Potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D-2h) B-4 isomer in its (1)A(g) electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D-4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm-1 for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B-4 it is the B-1g (D-4h mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of B-11(4) are calculated to be (splittings in parentheses): G(O) = 2352(22) cm(-1), v(1)(A(1g)) - 1136(24) cm(-1,) v(2)(B-1g)=209(144) cm(-1) v(3)(B-2g)=1198(19)cm(-1), v(4)(B-2u) = 271(24) cm(-1), and v(5) (E-u) = 1030( 166) cm(-1) (D-4h notation). Their variations in all stable isotoporners were investigated. Due to the presence of strong anharmonic resonances between the B-1g in-plane distortion and the B-2u, out-of-plane bending modes. the hiaher overtones and combination levels are difficult to assign unequivocally. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC3 isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC3-(I)-> c-SiC3(I) and c-SiC3-(II)-> c-SiC3(II) are reported. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental technique based on a scheme of vibrationally mediated photodissociation has been developed and applied to the spectroscopic study of highly excited vibrational states in HCN, with energies between 29 000 and 30 000 cm(-1). The technique consists of four sequential steps: in the first one, a high power laser is used to vibrationally excite the sample to an intermediate state, typically (0,0,4), the nu(3) mode being approximately equivalent to the C-H stretching vibration. Then a second laser is used to search for transitions between this intermediate state and highly vibrationally excited states. When one of these transitions is found, HCN molecules are transferred to a highly excited vibrational state. Third, a ultraviolet laser photodissociates the highly excited molecules to produce H and CN radicals in its A (2)Pi electronic state. Finally, a fourth laser (probe) detects the presence of the CN(A) photofragments by means of an A-->B-->X laser induced fluorescence scheme. The spectra obtained with this technique, consisting of several rotationally resolved vibrational bands, have been analyzed. The positions and rotational parameters of the states observed are presented and compared with the results of a state-of-the-art variational calculation. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the analysis and interpretation of rovibrational spectra involving highly excited vibrational states in the molecule of HCN. The spectra were obtained by means of the vibrationally mediated photodissociation technique. Analysis of the spectra revealed four bands with Sigma-Sigma structures that, once fitted, provided the energies and rotational constants of four new, highly excited vibrational states in the region of the potential energy surface near and above 30 000 cm(-1). All the states could be identified with the help of a state-of-the-art variational calculation. Together with the states already observed in previous works, eight highly excited states have so far been identified in this region. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibrations of H3O2- and D3O2- are investigated using diffusion Monte Carlo (DMC) and vibrational configuration-interaction approaches, as implemented in the program MULTIMODE. These studies use the potential surface recently developed by Huang [ J. Am. Chem. Soc. 126, 5042 (2004)]. The focus of this work is on the vibrational ground state and fundamentals which occur between 100 and 3700 cm(-1). In most cases, excellent agreement is obtained between the fundamental frequencies calculated by the two approaches. This serves to demonstrate the power of both methods for treating this very anharmonic system. Based on the results of the MULTIMODE and DMC treatments, the extent and nature of the couplings in H3O2- and D3O2- are investigated. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas phase vibrational spectra of BrHI- and BrDI- have been measured from 6 to 17 mum (590-1666 cm-1) using tunable infrared radiation from the free electron laser for infrared experiments in order to characterize the strong hydrogen bond in these species. BrHI-.Ar and BrDI-.Ar complexes were produced and mass selected, and the depletion of their signal due to vibrational predissociation was monitored as a function of photon energy. Additionally, BrHI- and BrDI- were dissociated into HBr (DBr) and I- via resonant infrared multiphoton dissociation. The spectra show numerous transitions, which had not been observed by previous matrix studies. New ab initio calculations of the potential-energy surface and the dipole moment are presented and are used in variational ro-vibrational calculations to assign the spectral features. These calculations highlight the importance of basis set in the simulation of heavy atoms such as iodine. Further, they demonstrate extensive mode mixing between the bend and the H-atom stretch modes in BrHI- and BrDI- due to Fermi resonances. These interactions result in major deviations from simple harmonic estimates of the vibrational energies. As a result of this new analysis, previous matrix-isolation spectra assignments are reevaluated. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full dimensional, ab initio-based semiglobal potential energy surface for C2H3+ is reported. The ab initio electronic energies for this molecule are calculated using the spin-restricted, coupled cluster method restricted to single and double excitations with triples corrections [RCCSD(T)]. The RCCSD(T) method is used with the correlation-consistent polarized valence triple-zeta basis augmented with diffuse functions (aug-cc-pVTZ). The ab initio potential energy surface is represented by a many-body (cluster) expansion, each term of which uses functions that are fully invariant under permutations of like nuclei. The fitted potential energy surface is validated by comparing normal mode frequencies at the global minimum and secondary minimum with previous and new direct ab initio frequencies. The potential surface is used in vibrational analysis using the "single-reference" and "reaction-path" versions of the code MULTIMODE. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interwar British retailing has been characterized as having lower productivity, less developed managerial hierarchies and methods, and weaker scale economies than its US counterpart. This article examines comparative productivity for one major segment of large-scale retailing in both countries—the department store sector. Drawing on exceptionally detailed contemporary survey data, we show that British department stores in fact achieved superior performance in terms of operating costs, margins, profits, and stock-turn. While smaller British stores had lower labour productivity than US stores of equivalent size, TFP was generally higher for British stores, which also enjoyed stronger scale economies. We also examine the reasons behind Britain's surprisingly strong relative performance, using surviving original returns from the British surveys. Contrary to arguments that British retailers faced major barriers to the development of large-scale enterprises, that could reap economies of scale and scope and invest in machinery and marketing to support the growth of their primary sales functions, we find that British department stores enthusiastically embraced the retail ‘managerial revolution’—and reaped substantial benefits from this investment.