46 resultados para Capital Asset Pricing Model
Resumo:
We derive general analytic approximations for pricing European basket and rainbow options on N assets. The key idea is to express the option’s price as a sum of prices of various compound exchange options, each with different pairs of subordinate multi- or single-asset options. The underlying asset prices are assumed to follow lognormal processes, although our results can be extended to certain other price processes for the underlying. For some multi-asset options a strong condition holds, whereby each compound exchange option is equivalent to a standard single-asset option under a modified measure, and in such cases an almost exact analytic price exists. More generally, approximate analytic prices for multi-asset options are derived using a weak lognormality condition, where the approximation stems from making constant volatility assumptions on the price processes that drive the prices of the subordinate basket options. The analytic formulae for multi-asset option prices, and their Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of the delta relative to subordinate multi-asset options, and the deltas of these subordinate options with respect to the underlying assets. Simulations test the accuracy of our approximations, given some assumed values for the asset volatilities and correlations. Finally, a calibration algorithm is proposed and illustrated.
Resumo:
The recent roll-out of smart metering technologies in several developed countries has intensified research on the impacts of Time-of-Use (TOU) pricing on consumption. This paper analyses a TOU dataset from the Province of Trento in Northern Italy using a stochastic adjustment model. Findings highlight the non-steadiness of the relationship between consumption and TOU price. Weather and active occupancy can partly explain future consumption in relation to price.
Resumo:
This paper aims to summarise the current performance of ozone data assimilation (DA) systems, to show where they can be improved, and to quantify their errors. It examines 11 sets of ozone analyses from 7 different DA systems. Two are numerical weather prediction (NWP) systems based on general circulation models (GCMs); the other five use chemistry transport models (CTMs). The systems examined contain either linearised or detailed ozone chemistry, or no chemistry at all. In most analyses, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) ozone data are assimilated; two assimilate SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) observations instead. Analyses are compared to independent ozone observations covering the troposphere, stratosphere and lower mesosphere during the period July to November 2003. Biases and standard deviations are largest, and show the largest divergence between systems, in the troposphere, in the upper-troposphere/lower-stratosphere, in the upper-stratosphere and mesosphere, and the Antarctic ozone hole region. However, in any particular area, apart from the troposphere, at least one system can be found that agrees well with independent data. In general, none of the differences can be linked to the assimilation technique (Kalman filter, three or four dimensional variational methods, direct inversion) or the system (CTM or NWP system). Where results diverge, a main explanation is the way ozone is modelled. It is important to correctly model transport at the tropical tropopause, to avoid positive biases and excessive structure in the ozone field. In the southern hemisphere ozone hole, only the analyses which correctly model heterogeneous ozone depletion are able to reproduce the near-complete ozone destruction over the pole. In the upper-stratosphere and mesosphere (above 5 hPa), some ozone photochemistry schemes caused large but easily remedied biases. The diurnal cycle of ozone in the mesosphere is not captured, except by the one system that includes a detailed treatment of mesospheric chemistry. These results indicate that when good observations are available for assimilation, the first priority for improving ozone DA systems is to improve the models. The analyses benefit strongly from the good quality of the MIPAS ozone observations. Using the analyses as a transfer standard, it is seen that MIPAS is similar to 5% higher than HALOE (Halogen Occultation Experiment) in the mid and upper stratosphere and mesosphere (above 30 hPa), and of order 10% higher than ozonesonde and HALOE in the lower stratosphere (100 hPa to 30 hPa). Analyses based on SCIAMACHY total column are almost as good as the MIPAS analyses; analyses based on SCIAMACHY limb profiles are worse in some areas, due to problems in the SCIAMACHY retrievals.
Resumo:
A two-sector Ramsey-type model of growth is developed to investigate the relationship between agricultural productivity and economy-wide growth. The framework takes into account the peculiarities of agriculture both in production ( reliance on a fixed natural resource base) and in consumption (life-sustaining role and low income elasticity of food demand). The transitional dynamics of the model establish that when preferences respect Engel's law, the level and growth rate of agricultural productivity influence the speed of capital accumulation. A calibration exercise shows that a small difference in agricultural productivity has drastic implications for the rate and pattern of growth of the economy. Hence, low agricultural productivity can form a bottleneck limiting growth, because high food prices result in a low saving rate.
Resumo:
Efficient markets should guarantee the existence of zero spreads for total return swaps. However, real estate markets have recorded values that are significantly different from zero in both directions. Possible explanations might suggest non-rational behaviour by inexperienced market players or unusual features of the underlying asset market. We find that institutional characteristics in the underlying market lead to market inefficiencies and, hence, to the creation of a rational trading window with upper and lower bounds within which transactions do not offer arbitrage opportunities. Given the existence of this rational trading window, we also argue that the observed spreads can substantially be explained by trading imbalances due to the limited liquidity of a newly formed market and/or to the effect of market sentiment, complementing explanations based on the lag between underlying market returns and index returns.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
Despite continuing developments in information technology and the growing economic significance of the emerging Eastern European, South American and Asian economies, international financial activity remains strongly concentrated in a relatively small number of international financial centres. That concentration of financial activity requires a critical mass of office occupation and creates demand for high specification, high cost space. The demand for that space is increasingly linked to the fortunes of global capital markets. That linkage has been emphasised by developments in real estate markets, notably the development of global real estate investment, innovation in property investment vehicles and the growth of debt securitisation. The resultant interlinking of occupier, asset, debt and development markets within and across global financial centres is a source of potential volatility and risk. The paper sets out a broad conceptual model of the linkages and their implications for systemic market risk and presents preliminary empirical results that provide support for the model proposed.
Resumo:
Depreciation is a key element of understanding the returns from and price of commercial real estate. Understanding its impact is important for asset allocation models and asset management decisions. It is a key input into well-constructed pricing models and its impact on indices of commercial real estate prices needs to be recognised. There have been a number of previous studies of the impact of depreciation on real estate, particularly in the UK. Law (2004) analysed all of these studies and found that the seemingly consistent results were an illusion as they all used a variety of measurement methods and data. In addition, none of these studies examined impact on total returns; they examined either rental value depreciation alone or rental and capital value depreciation. This study seeks to rectify this omission, adopting the best practice measurement framework set out by Law (2004). Using individual property data from the UK Investment Property Databank for the 10-year period between 1994 and 2003, rental and capital depreciation, capital expenditure rates, and total return series for the data sample and for a benchmark are calculated for 10 market segments. The results are complicated by the period of analysis which started in the aftermath of the major UK real estate recession of the early 1990s, but they give important insights into the impact of depreciation in different segments of the UK real estate investment market.
Resumo:
Volatility, or the variability of the underlying asset, is one of the key fundamental components of property derivative pricing and in the application of real option models in development analysis. There has been relatively little work on volatility in real terms of its application to property derivatives and the real options analysis. Most research on volatility stems from investment performance (Nathakumaran & Newell (1995), Brown & Matysiak 2000, Booth & Matysiak 2001). Historic standard deviation is often used as a proxy for volatility and there has been a reliance on indices, which are subject to valuation smoothing effects. Transaction prices are considered to be more volatile than the traditional standard deviations of appraisal based indices. This could lead, arguably, to inefficiencies and mis-pricing, particularly if it is also accepted that changes evolve randomly over time and where future volatility and not an ex-post measure is the key (Sing 1998). If history does not repeat, or provides an unreliable measure, then estimating model based (implied) volatility is an alternative approach (Patel & Sing 2000). This paper is the first of two that employ alternative approaches to calculating and capturing volatility in UK real estate for the purposes of applying the measure to derivative pricing and real option models. It draws on a uniquely constructed IPD/Gerald Eve transactions database, containing over 21,000 properties over the period 1983-2005. In this first paper the magnitude of historic amplification associated with asset returns by sector and geographic spread is looked at. In the subsequent paper the focus will be upon model based (implied) volatility.
Resumo:
This study considers the consistency of the role of both the private and public real estate markets within a mixed-asset context. While a vast literature has developed that has examined the potential role of both the private and public real estate markets, most studies have largely relied on both single time horizons and single sample periods. This paper builds upon the analysis of Lee and Stevenson (2005) who examined the consistency of REITs in a US capital market portfolio. The current paper extends that by also analyzing the role of the private market. To address the question, the allocation of both the private and traded markets is evaluated over different holding periods varying from 5- to 20-years. In general the results show that optimum mixed-asset portfolios already containing private real estate have little place for public real estate securities, especially in low risk portfolios and for longer investment horizons. Additionally, mixed-asset portfolios with public real estate either see the allocations to REITs diminished or eliminated if private real estate is also considered. The results demonstrate that there is a still a strong case for private real estate in the mixed-asset portfolio on the basis of an increase in risk-adjusted performance, even if the investor is already holding REITs, but that the reverse is not always the case.
Resumo:
This paper sets out the findings of a group of research and development projects carried out at the Department of Real Estate & Planning at the University of Reading and at Oxford Property Systems over the period 1999 – 2003. The projects have several aims: these are to identify the fundamental drivers of the pricing of different lease terms in the UK property sector; to identify current and best market practice and uncover the main variations in lease terms; to identify key issues in pricing lease terms; and to develop a model for the pricing of rent under a variety of lease variations. From the landlord’s perspective, the main factors driving the required ‘compensation’ for a lease term amendment include expected rental volatility, expected probability of tenant vacation, and the expected costs of tenant vacation. These data are used in conjunction with simulation technology to reflect the options inherent in certain lease types to explore the required rent adjustment. The resulting cash flows have interesting qualities which illustrate the potential importance of option pricing in a non-complex and practical way.
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.