49 resultados para CU2 IONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding properties of dioxadiaza-([17](DBF) N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group ( DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water ( 1 : 1, v/v), and at ionic strength 0.10 mol dm(-3) in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [ 17]( DBF) N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper( II), indicating that this ligand reveals a remarkable selectivity for cadmium( II) in the presence of the mentioned metal ions. The crystal structures of H-2[17](DBF)N2O32+ (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel( II) and copper( II) complexes with the two ligands were further studied by UV-vis-NIR and the copper( II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing > 1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing > 1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two complex heterometallic salts with formulae Tl-6[Fe(CN)(6)](1) (33)(NO3)(OH) (1) and [Co(bpy)(2)(CN)(2)](2){[Ag(CN)(2)](0) (5)[Fe(CN)(6)](0) (5)} 8H(2)O (2) have been synthesized and fully characterized Single crystal X-ray analyses reveal that compound 1 is comprised of discrete Tl+ cations and [Fe(CN)(6)](3-) anions together with OH- and NO3- anions Compound 2 contains [Co(bpy)(2)(CN)(2)](+) cations and {[Ag(CN)(2)][Fe(CN)(6)]}(-) anions together with eight molecules of water of crystallization Both structures form unprecedented three-dimensional supramolecular networks via non covalent interactions Another important observation is that the stereochemically active inert (lone) pair present on Tl+ plays little role in controlling the structure of 1 The water molecules in 2 play important roles in providing stability organizing a supramolecular network through hydrogen bonding In the syntheses of 1 and 2 Fe(II) is oxidized to Fe(III) and Co(II) to Co(III) respectively facilitating the formation of the salts that are obtained Both compounds exhibit photoluminescence emission in solution near the visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced along side ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of their on could be replaced by Al3+ in the reactants to produce Al- doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the duplex d[CG(5-BrU)ACG]2 bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 à resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co2+ ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40°, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co2+ ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA (â˜hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aqueous solution of the α-Ï-dicarboxylic acid octanedioic acid (odaH2) reacts with [Cu2(μ-O2CCH3)4(H2O)2] in the presence of an excess of pyridine (py) to give the crystalline copper(II) complex {Cu2(η1η1μ2-oda)2(py)4(H2O)2}n (1). structure of 1, as determined by X-ray crystallography, consists of polymeric chains in which bridging oda2∠anions link two crystallographically identical copper atoms. The copper atoms are also ligated by two transoidal pyridine nitrogens and an oxygen atom from an apical water molecule, giving the metals an overall N2O3 square-pyramidal geometry. If the blue solid 1 is gently heated, or if it is left to stand in its mother liquor for prolonged periods, it loses one molecule of pyridine and half a molecule of water and the green complex {Cu (oda)(py)(H2O)0.5}n (2) is formed. Spectroscopic and magnetic data for both complexes are given, together with the electrochemical and thermogravimetric measurements for 1.