19 resultados para CROSS-SECTION MEASUREMENTS
Resumo:
In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reaction CH3SCH3 + Cl2 → CH3SCH2Cl + HCl bands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy. A method has also been developed, with the flow-tube/PE spectrometer combination used, to measure photoionization cross-sections of the reagents and products at the photon energy utilized and this has allowed the photoionization cross-section of the intermediate to be estimated. This work augments an earlier study in which the rate constant of the reaction between CH3SCH3 (DMS) and Cl2 has been measured at room temperature.
Resumo:
The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used ‘‘Brown and Francis’’ mass–size relationship has often been applied to maximumparticle dimension observed by aircraftDmax rather than to the mean of the particle dimensions in two orthogonal directions Dmean, which was originally used by Brown and Francis. Analysis of particle images reveals that Dmax ’ 1.25Dmean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with Dmean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.h
Resumo:
Bleaching spectra of the ‘fast’ and ‘medium’ optically stimulated luminescence (OSL) components of quartz are reported. A dependence of photoionization cross-section, σ, on wavelength was observed for the fast and medium components and a significant difference in their responses to stimulation wavelength was found. The ratio of the fast and medium photoionization cross-sections, σfast/σmedium, varied from 30.6 when stimulated with View the MathML source light to 1.4 at View the MathML source. At View the MathML source the fast and medium photoionization cross-sections were found to be sufficiently different that infrared bleaching at raised temperatures allowed the selective removal of the fast component with negligible depletion of the medium. A method for optically separating the OSL components of quartz is suggested, based on the wavelength dependence of photoionization cross-sections.
Resumo:
The optically stimulated luminescence (OSL) from quartz is known to be the sum of several components with different rates of charge loss, originating from different trap types. The OSL components are clearly distinguished using the linear modulation (LM OSL) technique. A variety of pre-treatment and measurement conditions have been used on sedimentary samples in conjunction with linearly modulated optical stimulation to study in detail the behaviour of the OSL components of quartz. Single aliquots of different quartz samples have been found to contain typically five or six common LM OSL components when stimulated at View the MathML source. The components have been parameterised in terms of thermal stability (i.e. E and s), photoionisation cross-section energy dependence and dose response. The results of studies concerning applications of component-resolved LM OSL measurements on quartz are also presented. These include the detection of partial bleaching in young samples, use of ‘stepped wavelength’ stimulation to observe OSL from single components and attempts to extend the age range of quartz OSL dating.