34 resultados para CIRCULATION PATTERNS
Resumo:
Changes in the occurrence of atmospheric circulation patterns are not well understood. A study finds that these have been a big factor in observed changes in regional temperature extremes during recent decades.
Resumo:
The England and Wales precipitation (EWP) dataset is a homogeneous time series of daily accumulations from 1931 to 2014, composed from rain gauge observations spanning the region. The daily regional-average precipitation statistics are shown to be well described by a Weibull distribution, which is used to define extremes in terms of percentiles. Computed trends in annual and seasonal precipitation are sensitive to the period chosen, due to large variability on interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal precipitation variability are identified. These patterns project onto known leading modes of variability, all of which involve displacements of the jet stream and storm-track over the eastern Atlantic. The intensity of daily precipitation for each calendar season is investigated by partitioning all observations into eight intensity categories contributing equally to the total precipitation in the dataset. Contrary to previous results based on shorter periods, no significant trends of the most intense categories are found between 1931 and 2014. The regional-average precipitation is found to share statistical properties common to the majority of individual stations across England and Wales used in previous studies. Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a greater number of extreme events in the 3-and 5-day accumulations than any previous year in the record. It is the duration of precipitation events in these years that is remarkable, rather than the magnitude of the daily accumulations.
Resumo:
The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE) and warm extremes (WWE), and summer cold (SCE) and warm extremes (SWE). Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent), upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation). High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.
Resumo:
Recent temperature extremes have highlighted the importance of assessing projected changes in the variability of temperature as well as the mean. A large fraction of present day temperature variance is associated with thermal advection, as anomalous winds blow across the land-sea temperature contrast for instance. Models project robust heterogeneity in the 21st century warming pattern under greenhouse gas forcing, resulting in land-sea temperature contrasts increasing in summer and decreasing in winter, and the pole-to-equator temperature gradient weakening in winter. In this study, future monthly variability changes in the 17 member ensemble ESSENCE are assessed. In winter, variability in midlatitudes decreases while in very high latitudes and the tropics it increases. In summer, variability increases over most land areas and in the tropics, with decreasing variability in high latitude oceans. Multiple regression analysis is used to determine the contributions to variability changes from changing temperature gradients and circulation patterns. Thermal advection is found to be of particular importance in the northern hemisphere winter midlatitudes, where the change in mean state temperature gradients alone could account for over half the projected changes. Changes in thermal advection are also found to be important in summer in Europe and coastal areas, although less so than in winter. Comparison with CMIP5 data shows that the midlatitude changes in variability are robust across large regions, particularly high northern latitudes in winter and mid northern latitudes in summer.
Resumo:
Polynyas in the Laptev Sea are examined with respect to recurrence and interannual wintertime ice production.We use a polynya classification method based on passive microwave satellite data to derive daily polynya area from long-term sea-ice concentrations. This provides insight into the spatial and temporal variability of open-water and thin-ice regions on the Laptev Sea Shelf. Using thermal infrared satellite data to derive an empirical thin-ice distribution within the thickness range from 0 to 20 cm, we calculate daily average surface heat loss and the resulting wintertime ice formation within the Laptev Sea polynyas between 1979 and 2008 using reanalysis data supplied by the National Centers for Environmental Prediction, USA, as atmospheric forcing. Results indicate that previous studies significantly overestimate the contribution of polynyas to the ice production in the Laptev Sea. Average wintertime ice production in polynyas amounts to approximately 55 km39 27% and is mostly determined by the polynya area, wind speed and associated large-scale circulation patterns. No trend in ice production could be detected in the period from 1979/80 to 2007/08.
Resumo:
A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.
Resumo:
This paper reports recent changes in the mass balance record from the Djankuat Glacier, central greater Caucasus, Russia, and investigates possible relationships between the components of mass balance, local climate, and distant atmospheric forcing. The results clearly show that a strong warming signal has emerged in the central greater Caucasus, particularly since the 1993/1994 mass balance year, and this has led to a significant increase in the summer ablation of Djankuat. At the same time, there has been no compensating consistent increase in winter precipitation and accumulation leading to the strong net loss of mass and increase in glacier runoff. Interannual variability in ablation and accumulation is partly associated with certain major patterns of Northern Hemisphere climatic variability. The positive phase of the North Pacific (NP) teleconnection pattern forces negative geopotential height and temperature anomalies over the Caucasus in summer and results in reduced summer melt, such as in the early 1990s, when positive NP extremes resulted in a temporary decline in ablation rates. The positive phase of the NP is related to El Nino-Southern Oscillation, and it is possible that a teleconnection between the tropical Pacific sea surface temperatures and summer air temperatures in the Caucasus is bridged through the NP pattern. More recently, the NP pattern was predominantly negative, and this distant moderating forcing on summer ablation in the Caucasus was absent. Statistically significant correlations are observed between accumulation and the Scandinavian (SCA) teleconnection pattern. The frequent occurrence of the positive SCA phase at the beginning of accumulation season results in lower than average snowfall and reduced accumulation. The relationship between the North Atlantic Oscillation (NAO), Arctic Oscillation, and accumulation is weak, although positive precipitation anomalies in the winter months are associated with the negative phase of the NAO. A stronger positive correlation is observed between accumulation on Djankuat and geopotential height over the Bay of Biscay unrelated to the established modes of the Northern Hemisphere climatic variability. These results imply that the mass balance of Djankuat is sensitive to the natural variability in the climate system. Distant forcing, however, explains only 16% of the variance in the ablation record and cannot fully explain the recent increase in ablation and negative mass balance.
Resumo:
The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10(6) ms(3) s(-1)) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.
Resumo:
Observations and numerical modelling experiments provide evidence for links between variability in the Atlantic Meridional Overturning Circulation (AMOC) and global climate patterns. Reduction in the strength of the overturning circulation is thought to have played a key role in rapid climate change in the past and may have the potential to significantly influence climate change in the future, as noted in the last two IPCC assessment reports (2001, 2007). Both IPCC reports also highlighted the significant uncertainties that exist regarding the future behaviour of the AMOC under global warming. Model results suggest that changes in the AMOC can impact surface air temperature, precipitation patterns and sea level, particularly in areas bordering the North Atlantic, thus affecting human populations. Here current understanding of past, present and future change in the AMOC and the effects of such changes on climate are reviewed. The focus is on observations of the AMOC, how the AMOC influences climate and in what way the AMOC is likely to change over the next few decades and the 21st 34 century. The potential for decadal prediction of the AMOC is also discussed. Finally, the outstanding challenges and possible future directions for AMOC research are outlined.
Resumo:
Carbon monoxide (CO) concentration data from 1999–2006, monitored at 5 different pollution stations in a high-rise mega city (Hong Kong), were collected and investigated. The spatio-temporal characteristics of urban CO concentration profiles were obtained. A new approach was put forward to examine the relationship between urban CO concentration and different wind flow patterns. Rather than relying on the meteorological data from a single weather station, usually adopted in previous studies, four weather stations on the boundary of Hong Kong territory were used in the present study so as to identify 16 different wind flow patterns, among which a typical urban heat island circulation (UHIC) can be distinguished. Higher concentrations were observed to be associated with the flow pattern of an inflow from Lau Fau Shan (LFS) station which is located in the northwest of Hong Kong. This suggests that the ability of dilution for north-to-west wind is relatively weak due to the pollutants carried from outside Hong Kong. The effectiveness of wind speed on the alleviation of urban concentration is dependent on the initial concentration of the approaching wind. The increase of wind speed of north-to-west wind from 0 m/s to 6 m/s has little effect on the reduction of urban CO concentration, especially on the non-roadside stations. By contrast, for the southerly marine wind, pollution concentration decreases sharply with an increase in the wind speed. It was also found that urban heat island circulation (UHIC) is conducive of the accumulation of pollutants, especially at night. There exists a positive correlation between CO concentration and UHI intensity. This correlation is much stronger at night compared to during the day. Keywords: urban pollution monitoring, urban ventilation pattern, urban heat island circulation, mega city
Resumo:
The occurrence of wind storms in Central Europe is investigated with respect to large-scale atmospheric flow and local wind speeds in the investigation area. Two different methods of storm identification are applied for Central Europe as the target region: one based on characteristics of large-scale flow (circulation weather types, CWT) and the other on the occurrence of extreme wind speeds. The identified events are examined with respect to the NAO phases and CWTs under which they occur. Pressure patterns, wind speeds and cyclone tracks are investigated for storms assigned to different CWTs. Investigations are based on ERA40 reanalysis data. It is shown that about 80% of the storm days in Central Europe are connected with westerly flow and that Central European storm events primarily occur during a moderately positive NAO phase, while strongly positive NAO phases (6.4% of all days) account for more than 20% of the storms. A storm occurs over Central Europe during about 10% of the days with a strong positive NAO index. The most frequent pathway of cyclone systems associated with storms over Central Europe leads from the North Atlantic over the British Isles, North Sea and southern Scandinavia into the Baltic Sea. The mean intensity of the systems typically reaches its maximum near the British Isles. Differences between the characteristics for storms identified from the CWT identification procedure (gale days, based on MSLP fields) and those from extreme winds at Central European grid points are small, even though only 70% of the storm days agree. While most storms occur during westerly flow situations, specific characteristics of storms during the other CWTs are also considered. Copyright © 2009 Royal Meteorological Society
Resumo:
A range of possible changes in the frequency and characteristics of European wind storms under future climate conditions was investigated on the basis of a multi-model ensemble of 9 coupled global climate model (GCM) simulations for the 20th and 21st centuries following the IPCC SRES A1B scenario. A multi-model approach allowed an estimation of the (un)certainties of the climate change signals. General changes in large-scale atmospheric flow were analysed, the occurrence of wind storms was quantified, and atmospheric features associated with wind storm events were considered. Identified storm days were investigated according to atmospheric circulation, associated pressure patterns, cyclone tracks and wind speed patterns. Validation against reanalysis data revealed that the GCMs are in general capable of realistically reproducing characteristics of European circulation weather types (CWTs) and wind storms. Results are given with respect to frequency of occurrence, storm-associated flow conditions, cyclone tracks and specific wind speed patterns. Under anthropogenic climate change conditions (SRES A1B scenario), increased frequency of westerly flow during winter is detected over the central European investigation area. In the ensemble mean, the number of detected wind storm days increases between 19 and 33% for 2 different measures of storminess, only 1 GCM revealed less storm days. The increased number of storm days detected in most models is disproportionately high compared to the related CWT changes. The mean intensity of cyclones associated with storm days in the ensemble mean increases by about 10 (±10)% in the Eastern Atlantic, near the British Isles and in the North Sea. Accordingly, wind speeds associated with storm events increase significantly by about 5 (±5)% over large parts of central Europe, mainly on days with westerly flow. The basic conclusions of this work remain valid if different ensemble contructions are considered, leaving out an outlier model or including multiple runs of one particular model.
Resumo:
The evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing. As a result, scientific interest is rapidly shifting from detection and attribution of global climate change to prediction of its impacts at the regional scale. However, nearly everything we have any confidence in when it comes to climate change is related to global patterns of surface temperature, which are primarily controlled by thermodynamics. In contrast, we have much less confidence in atmospheric circulation aspects of climate change, which are primarily controlled by dynamics and exert a strong control on regional climate. Model projections of circulation-related fields, including precipitation, show a wide range of possible outcomes, even on centennial timescales. Sources of uncertainty include low-frequency chaotic variability and the sensitivity to model error of the circulation response to climate forcing. As the circulation response to external forcing appears to project strongly onto existing patterns of variability, knowledge of errors in the dynamics of variability may provide some constraints on model projections. Nevertheless, higher scientific confidence in circulation-related aspects of climate change will be difficult to obtain. For effective decision-making, it is necessary to move to a more explicitly probabilistic, risk-based approach.
Resumo:
Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface-air-temperature change is nonlinear in Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere-Ocean General Circulation Models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined the climate feedback parameter becomes significantly (95% confidence) less negative – i.e. the effective climate sensitivity increases – as time passes. Cloud feedback parameters show the largest changes. In the AOGCM-mean approximately 60% of the change in feedback parameter comes from the topics (30N-30S). An important region involved is the tropical Pacific where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea-surface-temperatures and sea-ice prescribed from its AOGCM counterpart each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. We also demonstrate that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but non-zero change in net radiation at the top of the atmosphere (~ -0.5 Wm-2 in HadCM3).