51 resultados para CH4 and NH3
Resumo:
Conventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal−support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water−gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions. The encapsulated metal is shown to interact with the thin CeO2 overlayer in each single particle in an optimum geometry to create a unique interface, giving high activity and excellent selectivity for the water−gas shift reaction, but is totally inert for methanation. Thus, this work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design which could enable exploitation of catalyst site differentiation, leading to new catalytic properties.
Resumo:
In order to validate the reported precision of space‐based atmospheric composition measurements, validation studies often focus on measurements in the tropical stratosphere, where natural variability is weak. The scatter in tropical measurements can then be used as an upper limit on single‐profile measurement precision. Here we introduce a method of quantifying the scatter of tropical measurements which aims to minimize the effects of short‐term atmospheric variability while maintaining large enough sample sizes that the results can be taken as representative of the full data set. We apply this technique to measurements of O3, HNO3, CO, H2O, NO, NO2, N2O, CH4, CCl2F2, and CCl3F produced by the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE‐FTS). Tropical scatter in the ACE‐FTS retrievals is found to be consistent with the reported random errors (RREs) for H2O and CO at altitudes above 20 km, validating the RREs for these measurements. Tropical scatter in measurements of NO, NO2, CCl2F2, and CCl3F is roughly consistent with the RREs as long as the effect of outliers in the data set is reduced through the use of robust statistics. The scatter in measurements of O3, HNO3, CH4, and N2O in the stratosphere, while larger than the RREs, is shown to be consistent with the variability simulated in the Canadian Middle Atmosphere Model. This result implies that, for these species, stratospheric measurement scatter is dominated by natural variability, not random error, which provides added confidence in the scientific value of single‐profile measurements.
Resumo:
We have performed systematic Monte Carlo studies on the influence of shifting the walls in slit-like systems constructed from folded graphene sheets on their adsorption properties. Specifically, we have analysed the effect on the mechanism of argon adsorption (T = 87 K) and on adsorption and separation of three binary gas mixtures: CO2/N2, CO2/CH4 and CH4/N2 (T = 298 K). The effects of the changes in interlayer distance were also determined. We show that folding of the walls significantly improves the adsorption and separation properties in comparison to ideal slit-like systems. Moreover, we demonstrate that mutual shift of sheets (for small interlayer distances) causes the appearance of small pores between opposite bulges. This causes an increase in vapour adsorption at low pressures. Due to overlapping of interactions with opposite walls causing an increase in adsorption energy, the mutual shift of sheets is also connected with the rise in efficiency of mixtures separation. The effects connected with sheet orientation vanish as the interlayer distance increases.
Resumo:
The results recently obtained by Mills and Robiette on local-mode effects in H2O, NH3 and CH4 type molecules are extended to ethene (C2H4) and propadiene (C3H4) type molecules. General relations among the anharmonic xrs constants and the Darling-Dennison Krrss constants for the stretching vibrations are derived, called “x,K relations”, which allow local-mode effects to be generated by adding the appropriate anharmonic and Darling-Dennison constants to the familiar normal-mode model of molecular vibrations. The general utility of x,K relations is discussed, and the results are reviewed for the molecular types for which they have so far been derived.
Resumo:
The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).
Resumo:
Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.
Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures
Resumo:
We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ∼18–20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).
Resumo:
The state-resolved reaction probability of CH4 on Pt�110-�1�2 was measured as a function of CH4 translational energy for four vibrational eigenstates comprising different amounts of C-H stretch and bend excitation. Mode-specific reactivity is observed both between states from different polyads and between isoenergetic states belonging to the same polyad of CH4. For the stretch/bend combination states, the vibrational efficacy of reaction activation is observed to be higher than for either pure C-H stretching or pure bending states, demonstrating a concerted role of stretch and bend excitation in C-H bond scission. This concerted role, reflected by the nonadditivity of the vibrational efficacies, is consistent with transition state structures found by ab initio calculations and indicates that current dynamical models of CH4 chemisorption neglect an important degree of freedom by including only C-H stretching motion.
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
The effect of presubmergence and green manuring on various processes involved in [N-15]-urea transformations were studied in a growth chamber after [N-15]-urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+-N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+-N from applied fertilizer, it maintained higher NH4+-N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9% (T-1), 23.9% (T-2), and 36.4% (T-3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.
Resumo:
A simple model for the effective vibrational hamiltonian of the XH stretching vibrations in H2O, NH3 and CH4 is considered, based on a morse potential function for the bond stretches plus potential and kinetic energy coupling between pairs of bond oscillators. It is shown that this model can be set up as a matrix in local mode basis functions, or as a matrix in normal mode basis functions, leading to identical results. The energy levels obtained exhibit normal mode patterns at low vibrational excitation, and local mode patterns at high excitation. When the hamiltonian is set up in the normal mode basis it is shown that Darling-Dennison resonances must be included, and simple relations are found to exist between the xrs, gtt, and Krrss anharmonic constants (where the Darling-Dennison coefficients are denoted K) due to their contributions from morse anharmonicity in the bond stretches. The importance of the Darling-Dennison resonances is stressed. The relationship of the two alternative representations of this local mode/normal mode model are investigated, and the potential uses and limitations of the model are discussed.
Resumo:
Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments and on field trials. These emission spectra were obtained using an adapted FTIR spectrometer with 0.25 cm-1 spectral resolution. The CO2 and H2O vapour content in the plume from a 55 m smoke stack and the temperature of these gases were obtained by comparing the measured emission spectra with those modelled using the HITRAN atmospheric transmission database. The spatial distributions of CO2, CO and unburnt CH4 in a laboratory methane flame were reconstructed tomographically using a matrix inversion technique.
Resumo:
Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.