18 resultados para CADAVER KIDNEYS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some death scene investigations commence without knowledge of the location of the body and/or decomposition site. In these cases, it is necessary to locate the remains or the site where the body decomposed prior to movement. We hypothesized that the burial of a mammalian cadaver will result in the release of ninhydrin reactive nitrogen (NRN) into associated soil and that this reaction might have potential as a tool for the identification of clandestine graves. Juvenile rat (Rattus rattus) cadavers were buried in three contrasting soil types in Australian tropical savanna ecosystems and allowed to decompose over a period of 28 days. Soils were sequentially harvested and analyzed for NRN. Cadaver burial resulted in an approximate doubling (mean = 1.7 ± 0.1) in the concentration of soil NRN. This reaction has great potential to be used as a presumptive test for gravesoil and this use might be greatly enhanced following more detailed research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two closely related chemoecological groups of fungi, the ammonia fungi and the postputrefaction fungi, have been associated with the decomposition by-products of cadavers. Sporocarps have been observed in disparate woodlands across the world and often mark sites of graves. These groups of fungi provide visible markers of the sites of cadaver decomposition and follow repeated patterns of successional change as apparent decomposition proceeds. We suggest these phenomena may become a useful tool for crime scene investigation, forensic archaeology and forensic taphonomy.