38 resultados para Bushfire Prevention and Monitoring
Resumo:
With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
Food proteins such as milk and soy are a rich source of bioactive peptides. In the last decade, research into this area has intensified and new bioactive peptide sequences have been discovered with a range of apparent biological functions; for example, antihypertensive, antioxidant, and antimicrobial effects and opiate-like qualities have been reported. These peptides could therefore lead to the development of important functional food products and ingredients for the prevention and even treatment of chronic diseases such as cardiovascular disease and cancer. Peptides can be produced by fermentation with dairy starters for instance, and by enzymatic hydrolysis with pancreatic and microbial enzymes. Further purification is typically carried out by membrane filtration and/or chromatographic methods. The production of novel bioactive peptides and their incorporation into functional food products poses several technological challenges as well as regulatory and marketing issues. Proof of efficacy is of paramount importance; this should be verified by conducting appropriate tests in vivo in animals and in humans. In addition, tests for cytotoxicity and allergenicity must be conducted. Despite all of these hurdles, scientific evidence is increasingly demonstrating the health benefits of diet-based disease prevention, and therefore new developments in this area are likely to continue both at the research and the commercialisation level.
Resumo:
The aim of this paper is to show the feasibility of the use of functional electrical stimulation (FES) applied to the lower back muscles for pressure sores prevention in paraplegia. The hypothesis under study is that FES induces a change in the pressure distribution on the contact area during sitting. Tests were conducted on a paraplegic subject (T5), sitting on a standard wheelchair and cushion. Trunk extensors (mainly the erector spinae) were stimulated using surface electrodes placed on the skin. A pressure mapping system was used to measure the pressure on the sitting surface in four situations: (a) no stimulation; (b) stimulation on one side of the spine only; (c) stimulation on both sides, at different levels; and (d) stimulation at the same level on both sides, during pressure-relief manoeuvres. A session of prolonged stimulation was also conducted. The experimental results show that the stimulation of the erector spinae on one side of the spine can induce a trunk rotation on the sagittal plane, which causes a change in the pressure distribution. A decrease of pressure on the side opposite to the stimulation was recorded. The phenomenon is intensified when different levels of stimulation are applied to the two sides, and such change can be sustained for a considerable time (around 5 minutes). The stimulation did not induce changes during pressure-relief manoeuvres. Finally, from this research we can conclude that the stimulation of the trunk extensors can be a useful tool for pressure sores prevention, and can potentially be used in a routine for pressure sores prevention based on periodical weight shifts.
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.
Resumo:
The Improved Stratospheric and Mesospheric Sounder (ISAMS) is designed to measure the Earths middle atmosphere in the range of 4.6 to 16.6 micorns. This paper considers all the coated optical elements in two radiometric test channels. (Analysis of the spectral response will be presented as a seperate paper at this symposium, see Sheppard et al). Comparisons between the compued spectral performance and measurements from actual coatings will be discussed: These will include substrate absorption simulations. The results of environmental testing (durability and stability) are included, together with details of coating deposition and monitoring conditions.
Resumo:
Although in several EU Member States many public interventions have been running for the prevention and/or management of obesity and other nutrition-related health conditions, few have yet been formally evaluated. The multidisciplinary team of the EATWELL project will gather benchmark data on healthy eating interventions in EU Member States and review existing information on the effectiveness of interventions using a three-stage procedure (i) Assessment of the intervention's impact on consumer attitudes, consumer behaviour and diets; (ii) The impact of the change in diets on obesity and health and (iii) The value attached by society to these changes, measured in life years gained, cost savings and quality-adjusted life years. Where evaluations have been inadequate, EATWELL will gather secondary data and analyse them with a multidisciplinary approach incorporating models from the psychology and economics disciplines. Particular attention will be paid to lessons that can be learned from private sector that are transferable to the healthy eating campaigns in the public sector. Through consumer surveys and workshops with other stakeholders, EATWELL will assess the acceptability of the range of potential interventions. Armed with scientific quantitative evaluations of policy interventions and their acceptability to stakeholders, EATWELL expects to recommend more appropriate interventions for Member States and the EU, providing a one-stop guide to methods and measures in interventions evaluation, and outline data collection priorities for the future.
Resumo:
Background: Medication errors in general practice are an important source of potentially preventable morbidity and mortality. Building on previous descriptive, qualitative and pilot work, we sought to investigate the effectiveness, cost-effectiveness and likely generalisability of a complex pharm acist-led IT-based intervention aiming to improve prescribing safety in general practice. Objectives: We sought to: • Test the hypothesis that a pharmacist-led IT-based complex intervention using educational outreach and practical support is more effective than simple feedback in reducing the proportion of patients at risk from errors in prescribing and medicines management in general practice. • Conduct an economic evaluation of the cost per error avoided, from the perspective of the National Health Service (NHS). • Analyse data recorded by pharmacists, summarising the proportions of patients judged to be at clinical risk, the actions recommended by pharmacists, and actions completed in the practices. • Explore the views and experiences of healthcare professionals and NHS managers concerning the intervention; investigate potential explanations for the observed effects, and inform decisions on the future roll-out of the pharmacist-led intervention • Examine secular trends in the outcome measures of interest allowing for informal comparison between trial practices and practices that did not participate in the trial contributing to the QRESEARCH database. Methods Two-arm cluster randomised controlled trial of 72 English general practices with embedded economic analysis and longitudinal descriptive and qualitative analysis. Informal comparison of the trial findings with a national descriptive study investigating secular trends undertaken using data from practices contributing to the QRESEARCH database. The main outcomes of interest were prescribing errors and medication monitoring errors at six- and 12-months following the intervention. Results: Participants in the pharmacist intervention arm practices were significantly less likely to have been prescribed a non-selective NSAID without a proton pump inhibitor (PPI) if they had a history of peptic ulcer (OR 0.58, 95%CI 0.38, 0.89), to have been prescribed a beta-blocker if they had asthma (OR 0.73, 95% CI 0.58, 0.91) or (in those aged 75 years and older) to have been prescribed an ACE inhibitor or diuretic without a measurement of urea and electrolytes in the last 15 months (OR 0.51, 95% CI 0.34, 0.78). The economic analysis suggests that the PINCER pharmacist intervention has 95% probability of being cost effective if the decision-maker’s ceiling willingness to pay reaches £75 (6 months) or £85 (12 months) per error avoided. The intervention addressed an issue that was important to professionals and their teams and was delivered in a way that was acceptable to practices with minimum disruption of normal work processes. Comparison of the trial findings with changes seen in QRESEARCH practices indicated that any reductions achieved in the simple feedback arm were likely, in the main, to have been related to secular trends rather than the intervention. Conclusions Compared with simple feedback, the pharmacist-led intervention resulted in reductions in proportions of patients at risk of prescribing and monitoring errors for the primary outcome measures and the composite secondary outcome measures at six-months and (with the exception of the NSAID/peptic ulcer outcome measure) 12-months post-intervention. The intervention is acceptable to pharmacists and practices, and is likely to be seen as costeffective by decision makers.
Resumo:
The paper highlights the methodological development of identifying and characterizing rice (Oryza sativa L.) ecosystems and the varietal deployment process through participatory approaches. Farmers have intricate knowledge of their rice ecosystems. Evidence from Begnas (mid-hill) and Kachorwa (plain) sites in Nepal suggests that farmers distinguish ecosystems for rice primarily on the basis of moisture and fertility of soils. Farmers also differentiate the number, relative size and specific characteristics of each ecosystem within a given geographic area. They allocate individual varieties to each ecosystem, based on the principle of ‘best fit’ between ecosystem characteristics and varietal traits, indicating that competition between varieties mainly occurs within the ecosystems. Land use and ecosystems determine rice genetic diversity, with marginal land having fewer options for varieties than more productive areas. Modern varieties are mostly confined to productive land, whereas landraces are adapted to marginal ecosystems. Researchers need to understand the ecosystems and varietal distribution within ecosystems better in order to plan and execute programmes on agrobiodiversity conservation on-farm, diversity deployment, repatriation of landraces and monitoring varietal diversity. Simple and practical ways to elicit information on rice ecosystems and associated varieties through farmers’ group discussion at village level are suggested.
Resumo:
Background: Jargon aphasia with neologisms (i.e., novel nonword utterances) is a challenging language disorder that lacks a definitive theoretical description as well as clear treatment recommendations (Marshall, 2006). Aim: The aims of this two part investigation were to determine the source of neologisms in an individual with jargon aphasia (FF), to identify potential facilitatory semantic and/or phonological cuing effects in picture naming, and to determine whether the timing of the cues relative to the target picture mediated the cuing advantage. Methods and Procedures: FF’s underlying linguistic deficits were determined using several cognitive and linguistic tests. A series of computerized naming experiments using a modified version of the 175 item-Philadelphia Naming Test (Roach, Schwartz, Martin, Grewal, & Brecher, 1996) manipulated the cue type (semantic versus phonological) and relatedness (related versus unrelated). In a follow-up experiment, the relative timing of phonological cues was manipulated to test the effect of timing on the cuing advantage. The accuracy of naming responses and error patterns were analyzed. Outcome and Results: FF’s performance on the linguistic and cognitive test battery revealed a severe naming impairment with relatively spared word and nonword repetition, auditory comprehension of words and monitoring, and fairly well preserved semantic abilities. This performance profile was used to evaluate various explanations for neologisms including a loss of phonological codes, monitoring failure, and impairments in semantic system. The primary locus of his deficit appears to involve the connection between semantics to phonology, specifically, when word production involves accessing the phonological forms following semantic access. FF showed a significant cuing advantage only for phonological cues in picture naming, particularly when the cue preceded or coincided with the onset of the target picture. Conclusions: When integrated with previous findings, the results from this study suggest that the core deficit of this and at least some other jargon aphasics is in the connection from semantics to phonology. The facilitative advantage of phonological cues could potentially be exploited in future clinical and research studies to test the effectiveness of these cues for enhancing naming performance in individuals like FF.
Resumo:
An EPRSC ‘Partnerships for Public Engagement’ scheme 2010. FEC 122,545.56/UoR 10K everything and nothing is a performance and workshop which engages the public creatively with mathematical concepts: the Poincare conjecture, the shape of the universe, topology, and the nature of infinity are explored through an original, thought provoking piece of music theatre. Jorge Luis Borges' short story 'The Library of Babel' and the aviator Amelia Earhart’s attempt to circumnavigate the globe combine to communicate to audience key mathematical concepts of Poincare’s conjecture. The project builds on a 2008 EPSRC early development project (EP/G001650/1) and is led by an interdisciplinary team the19thstep consisting of composer Dorothy Ker, sculptor Kate Allen and mathematician Marcus du Sautoy. everything and nothing has been devised by Dorothy Ker and Kate Allen, is performed by percussionist Chris Brannick, mezzo soprano Lucy Stevens and sound designer Kelcey Swain. The UK tour targets arts-going audiences, from the Green Man Festival to the British Science Festival. Each performance is accompanied with a workshop led by Topologist Katie Steckles. Alongside the performances and workshops is a website, http://www.everythingandnothingproject.com/ The Public engagement evaluation and monitoring for the project are carried out by evaluator Bea Jefferson. The project is significant in its timely relation to contemporary mathematics and arts-science themes delivering an extensive programme of public engagement.
Resumo:
Where joint forest management has been introduced into Tanzania, ‘volunteer’ patrollers take responsibility for enforcing restrictions over the harvesting of forest resources, often receiving as an incentive a share of the collected fine revenue. Using an optimal enforcement model, we explore how that share, and whether villagers have alternative sources of forest products, determines the effort patrollers put into enforcement and whether they choose to take a bribe rather than honestly reporting the illegal collection of forest resources. Without funds for paying and monitoring patrollers, policy makers face tradeoffs over illegal extraction, forest protection and revenue generation through fine collection.
Resumo:
Unlike corporate and business levels, there is little research examining corporate responsibility (CR) at the functional level of the firm including supply chain strategy. The results of a firm-level survey show that CR internal awareness, and monitoring CR performance are positively related to the supply chain partnership approach, however sharing CR best practices is negatively associated. Furthermore, the impact of CR on firm performance is mediated by the functional behaviour of supply chain partnership formation. Our study provides support for including CR awareness building and monitoring in the development of partnerships but cautions against imposing CR best practices on suppliers.