165 resultados para Building demand estimation model
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.
Resumo:
We have developed a model that allows players in the building and construction sector and the energy policy makers on energy strategies to be able to perceive the interest of investors in the kingdom of Bahrain in conducting Building Integrated Photovoltaic (BIPV) or Building integrated wind turbines (BIWT) projects, i.e. a partial sustainable or green buildings. The model allows the calculation of the Sustainable building index (SBI), which ranges from 0.1 (lowest) to 1.0 (highest); the higher figure the more chance for launching BIPV or BIWT. This model was tested in Bahrain and the calculated SBI was found 0.47. This means that an extensive effort must be made through policies on renewable energy, renewable energy education, and incentives to BIPV and BIWT projects, environmental awareness and promotion to clean and sustainable energy for building and construction projects. Our model can be used internationally to create a "Global SBI" database. The Sustainable building and construction initiative (SBCI), United Nation, can take the task for establishing such task using this model.
Resumo:
While building provides shelter for human being, the previous models for assessing the intelligence of a building seldom consider the responses of occupants. In addition, the assessment is usually conducted by an authority organization on a yearly basis, thus can seldom provide timely assistance for facility manager to improve his daily facility maintenance performance. By the extending the law of entropy into the area of intelligent building, this paper demonstrate that both energy consumption and the response of occupants are important when partially assessing the intelligence of a building. This study then develops a sensor based real time building intelligence (BI) assessment model. An experimental case study demonstrates how the model can be implemented. The developed model can address the two demerits of the previous BI assessment model.
Resumo:
Modern buildings are designed to enhance the match between environment, spaces and the people carrying out work, so that the well-being and the performance of the occupants are all in harmony. Building services are systems that facilitate a healthy working environment within which workers productivity can be optimised in the buildings. However, the maintenance of these services is fraught with problems that may contribute to up to 50% of the total life cycle cost of the building. Maintenance support is one area which is not usually designed into the system as this is not common practice in the services industry. The other areas of shortfall for future designs are; client requirements, commissioning, facilities management data and post occupancy evaluation feedback which needs to be adequately planned to capture and document this information for use in future designs. At the University of Reading an integrated approach has been developed to assemble the multitude of aspects inherent in this field. The means records required and measured achievements for the benefit of both building owners and practitioners. This integrated approach can be represented in a Through Life Business Model (TLBM) format using the concept of Integrated Logistic Support (ILS). The prototype TLBM developed utilises the tailored tools and techniques of ILS for building services. This TLBM approach will facilitate the successful development of a databank that would be invaluable in capturing essential data (e.g. reliability of components) for enhancing future building services designs, life cycle costing and decision making by practitioners, in particular facilities managers.
Resumo:
A generic model of Exergy Assessment is proposed for the Environmental Impact of the Building Lifecycle, with a special focus on the natural environment. Three environmental impacts: energy consumption, resource consumption and pollutant discharge have been analyzed with reference to energy-embodied exergy, resource chemical exergy and abatement exergy, respectively. The generic model of Exergy Assessment of the Environmental Impact of the Building Lifecycle thus formulated contains two sub-models, one from the aspect of building energy utilization and the other from building materials use. Combined with theories by ecologists such as Odum, the paper evaluates a building's environmental sustainability through its exergy footprint and environmental impacts. A case study from Chongqing, China illustrates the application of this method. From the case study, it was found that energy consumption constitutes 70–80% of the total environmental impact during a 50-year building lifecycle, in which the operation phase accounts for 80% of the total environmental impact, the building material production phase 15% and 5% for the other phases.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.