38 resultados para Building blocks in elastomer composite fabrication
Resumo:
The present food shortages in the Horn of Africa and the West African Sahel are affecting 31 million people. Such continuing and future crises require that people in the region adapt to an increasing and potentially irreversible global sustainability challenge. Given this situation and that short-term weather and seasonal climate forecasting have limited skill for West Africa, the Rainwatch project illustrates the value of near real-time monitoring and improved communication for the unfavourable 2011 West African monsoon, the resulting severe drought-induced humanitarian impacts continuing into 2012, and their exacerbation by flooding in 2012. Rainwatch is now coupled with a boundary organization (Africa Climate Exchange, AfClix) with the aim of integrating the expertise and actions of relevant institutions, agencies and stakeholders to broker ground-based dialogue to promote resilience in the face of recurring crisis.
Resumo:
This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Modern organisms are adapted to a wide variety of habitats and lifestyles. The processes of evolution have led to complex, interdependent, well-designed mechanisms of todays world and this research challenge is to transpose these innovative solutions to resolve problems in the context of architectural design practice, e.g., to relate design by nature with design by human. In a design by human environment, design synthesis can be performed with the use of rapid prototyping techniques that will enable to transform almost instantaneously any 2D design representation into a physical three-dimensional model, through a rapid prototyping printer machine. Rapid prototyping processes add layers of material one on top of another until a complete model is built and an analogy can be established with design by nature where the natural lay down of earth layers shapes the earth surface, a natural process occurring repeatedly over long periods of time. Concurrence in design will particularly benefit from rapid prototyping techniques, as the prime purpose of physical prototyping is to promptly assist iterative design, enabling design participants to work with a three-dimensional hardcopy and use it for the validation of their design-ideas. Concurrent design is a systematic approach aiming to facilitate the simultaneous involvment and commitment of all participants in the building design process, enabling both an effective reduction of time and costs at the design phase and a quality improvement of the design product. This paper presents the results of an exploratory survey investigating both how computer-aided design systems help designers to fully define the shape of their design-ideas and the extent of the application of rapid prototyping technologies coupled with Internet facilities by design practice. The findings suggest that design practitioners recognize that these technologies can greatly enhance concurrence in design, though acknowledging a lack of knowledge in relation to the issue of rapid prototyping.
Resumo:
The importance of biological materials has long been recognized from the molecular level to higher levels of organization. Whereas, in traditional engineering, hardness and stiffness are considered desirable properties in a material, biology makes considerable and advantageous use of softer, more pliable resources. The development, structure and mechanics of these materials are well documented and will not be covered here. The purpose of this paper is, however, to demonstrate the importance of such materials and, in particular, the functional structures they form. Using only a few simple building blocks, nature is able to develop a plethora of diverse materials, each with a very different set of mechanical properties and from which a seemingly impossibly large number of assorted structures are formed. There is little doubt that this is made possible by the fact that the majority of biological ‘materials’ or ‘structures’ are based on fibres and that these fibres provide opportunities for functional hierarchies. We show how these structures have inspired a new generation of innovative technologies in the science and engineering community. Particular attention is given to the use of insects as models for biomimetically inspired innovations.
Resumo:
Taipei City has put a significant effort toward the implementation of green design and green building schemes towards a sustainable eco-city. Although some of the environmental indicators have not indicated significant progress in environmental improvement, implementing the two schemes has obtained considerable results; therefore, the two schemes are on the right path towards promoting a sustainable eco-city. However, it has to be admitted that the two schemes are a rather “technocratic” set of solutions and eco-centric approach. It is suggested that not only the public sector but also the private sector need to put more effort toward implement the schemes, and the government needs to encourage the private sector to adopt the schemes in practice.
Resumo:
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.