24 resultados para Budget and accounts


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0–300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993–2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997–2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997–2009. Annual time series of global and hemispheric OHC change for 0–700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization ‘shock’ over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady heat uptake of approximately 0.9 ± 0.8 W m−2 (expressed relative to Earth’s surface area) between 1995 and 2002, which reduces to about 0.2 ± 0.6 W m−2 between 2004 and 2006, in qualitative agreement with recent analysis of Earth’s energy imbalance. There is a marked reduction in the ensemble spread of OHC trends below 300 m as the Argo profiling float observations become available in the early 2000s. In general, we suggest that ORAs should be treated with caution when employed to understand past ocean warming trends—especially when considering the deeper ocean where there is little in the way of observational constraints. The current work emphasizes the need to better observe the deep ocean, both for providing observational constraints for future ocean state estimation efforts and also to develop improved models and data assimilation methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A common mode whereby destruction of coastal lowlands occurs is frontal erosion. The edge cliffing, nonetheless, is also an inherent aspect of salt marsh development in many northwest European tidal marshes. Quite a few geomorphologists in the earlier half of the past century recognized such edge erosion as a definite repetitive stage within an autocyclic mode of marsh growth. A shift in research priorities during the past decades (primarily because of coastal management concerns, however) has resulted in an enhanced focus on sediment-flux measurement campaigns on salt marshes. This, somewhat "object-oriented" strategy hindered any further development of the once-established autocyclic growth concept, which virtually has gone into oblivion in recent times. This work makes an attempt to resurrect the notion of autocyclicity by employing its premises to address edge erosion in tidal marshes. Through a review of intertidal morphosedimentology the underlying framework for autocyclicity is envisaged. The phenomenon is demonstrated in the Holocene salt marsh plain of Moricambe basin in NW England that displays several distinct phases of marsh retreat in the form of abandoned clifflets. The suite of abandoned shorelines and terraces has been identified in detailed field mapping that followed analysis of topographic maps and aerial photographs. Vertical trends in marsh plain sediments are recorded in trenches for signs of past marsh front movements. The characteristic sea level history of the area offers an opportunity to differentiate the morphodynamic variability induced in the autocyclic growth of the marsh plain in scenarios of rising and falling sea level and the accompanied change in sediment budget. The ideas gathered are incorporated to construct a conceptual model that links temporal extent of marsh erosion to inner tidal flat sediment budget and sea level tendency. The review leads to recognition of the necessity of adopting an holistic approach in the morphodynamic investigations where marshes should be treated as a component within the "marsh-mudflat system" as each element apparently modulates evolution of the other, with an eventual linkage to subtidal channels. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The 'jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Greek speakers say "ovpa", Germans "schwanz'' and the French "queue'' to describe what English speakers call a 'tail', but all of these languages use a related form of 'two' to describe the number after one. Among more than 100 Indo-European languages and dialects, the words for some meanings (such as 'tail') evolve rapidly, being expressed across languages by dozens of unrelated words, while others evolve much more slowly-such as the number 'two', for which all Indo-European language speakers use the same related word-form(1). No general linguistic mechanism has been advanced to explain this striking variation in rates of lexical replacement among meanings. Here we use four large and divergent language corpora (English(2), Spanish(3), Russian(4) and Greek(5)) and a comparative database of 200 fundamental vocabulary meanings in 87 Indo-European languages(6) to show that the frequency with which these words are used in modern language predicts their rate of replacement over thousands of years of Indo-European language evolution. Across all 200 meanings, frequently used words evolve at slower rates and infrequently used words evolve more rapidly. This relationship holds separately and identically across parts of speech for each of the four language corpora, and accounts for approximately 50% of the variation in historical rates of lexical replacement. We propose that the frequency with which specific words are used in everyday language exerts a general and law-like influence on their rates of evolution. Our findings are consistent with social models of word change that emphasize the role of selection, and suggest that owing to the ways that humans use language, some words will evolve slowly and others rapidly across all languages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annatto dyes are widely used in food and are finding increasing interest also for their application in the pharmaceutical and cosmetics industry. Bixin is the main pigment extracted from annatto seeds and accounts for 80% of the carotenoids in the outer coat of the seeds; norbixin being the water-soluble form of the bixin. Typically annatto dyes are extracted from the seeds by mechanical means or solutions of alkali, edible oil or organic solvents, or a combination of the two depending on the desired final product. In this work CGAs are investigated as an alternative separation method for the recovery of norbixin from a raw extraction solution of annatto pigments in KOH. A volume of CGAs generated from a cationic surfactant (CTAB) solution is mixed with a volume of annatto solution and when the mixture is allowed to settle it separates into the top aphron phase and the bottom liquid phase. Potassium norbixinate presented in the annatto solution will interact with the surfactant in the aphron phase, which results in the effective separation of norbixin. Recovery= 94% was achieved at a CTAB to norbixin molar ratio of 3.3. In addition a mechanism of separation is proposed here based on the separation results with the cationic surfactant and an anionic surfactant (bis-2-ethyl hexyl sulfosuccinate, AOT) and measurements of surfactant to norbixin ratio in the aphron phase; electrostatic interactions between the surfactant and norbixin molecules result in the fort-nation of a coloured complex and effective separation of norbixin. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite measurements of the radiation budget and data from the U.S. National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis are used to investigate the links between anomalous cloud radiative forcing over the tropical west Pacific warm pool and the tropical dynamics and sea surface temperature (SST) distribution during 1998. The ratio, N, of the shortwave cloud forcing (SWCF) to longwave cloud forcing (LWCF) (N = −SWCF/LWCF) is used to infer information on cloud altitude. A higher than average N during 1998 appears to be related to two separate phenomena. First, dynamic regime-dependent changes explain high values of N (associated with low cloud altitude) for small magnitudes of SWCF and LWCF (low cloud fraction), which reflect the unusual occurrence of mean subsiding motion over the tropical west Pacific during 1998, associated with the anomalous SST distribution. Second, Tropics-wide long-term changes in the spatial-mean cloud forcing, independent of dynamic regime, explain the higher values of N during both 1998 and in 1994/95. The changes in dynamic regime and their anomalous structure in 1998 are well simulated by version HadAM3 of the Hadley Centre climate model, forced by the observed SSTs. However, the LWCF and SWCF are poorly simulated, as are the interannual changes in N. It is argued that improved representation of LWCF and SWCF and their dependence on dynamical forcing are required before the cloud feedbacks simulated by climate models can be trusted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

new rheology that explicitly accounts for the subcontinuum anisotropy of the sea ice cover is implemented into the Los Alamos sea ice model. This is in contrast to all models of sea ice included in global circulation models that use an isotropic rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. The anisotropic rheology provides a subcontinuum description of the mechanical behavior of sea ice and accounts for a continuum scale stress with large shear to compression ratio and tensile stress component. Results over the Arctic of a stand-alone version of the model are presented and anisotropic model sensitivity runs are compared with a reference elasto-visco-plastic simulation. Under realistic forcing sea ice quickly becomes highly anisotropic over large length scales, as is observed from satellite imagery. The influence of the new rheology on the state and dynamics of the sea ice cover is discussed. Our reference anisotropic run reveals that the new rheology leads to a substantial change of the spatial distribution of ice thickness and ice drift relative to the reference standard visco-plastic isotropic run, with ice thickness regionally increased by more than 1 m, and ice speed reduced by up to 50%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.