34 resultados para Boolean-like laws. Fuzzy implications. Fuzzy rule based systens. Fuzzy set theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-system models suggest that English past tense morphology involves two processing routes: rule application for regular verbs and memory retrieval for irregular verbs (Pinker, 1999). In second language (L2) processing research, Ullman (2001a) suggested that both verb types are retrieved from memory, but more recently Clahsen and Felser (2006) and Ullman (2004) argued that past tense rule application can be automatised with experience by L2 learners. To address this controversy, we tested highly proficient Greek-English learners with naturalistic or classroom L2 exposure compared to native English speakers in a self-paced reading task involving past tense forms embedded in plausible sentences. Our results suggest that, irrespective to the type of exposure, proficient L2 learners of extended L2 exposure apply rule-based processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is concerned with the way that illustrations, photographs, diagrams and graphs, and typographic elements interact to convey ideas on the book page. A framework for graphic description is proposed to elucidate this graphic language of ‘complex texts’. The model is built up from three main areas of study, with reference to a corpus of contemporary children’s science books. First, a historical survey puts the subjects for study in context. Then a multidisciplinary discussion of graphic communication provides a theoretical underpinning for the model; this leads to various proposals, such as the central importance of ratios and relationships among parts in creating meaning in graphic communication. Lastly a series of trials in description contribute to the structure of the model itself. At the heart of the framework is an organising principle that integrates descriptive models from fields of design, literary criticism, art history, and linguistics, among others, as well as novel categories designed specifically for book design. Broadly, design features are described in terms of elemental component parts (micro-level), larger groupings of these (macro-level), and finally in terms of overarching, ‘whole book’ qualities (meta-level). Various features of book design emerge at different levels; for instance, the presence of nested discursive structures, a form of graphic recursion in editorial design, is proposed at the macro-level. Across these three levels are the intersecting categories of ‘rule’ and ‘context’, offering different perspectives with which to describe graphic characteristics. Contextbased features are contingent on social and cultural environment, the reader’s previous knowledge, and the actual conditions of reading; rule-based features relate to the systematic or codified aspects of graphic language. The model aims to be a frame of reference for graphic description, of use in different forms of qualitative or quantitative research and as a heuristic tool in practice and teaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of small quantities of nanoparticles to conventional and sustainable thermoplastics leads to property enhancements with considerable potential in many areas of applications including food packaging 1, lightweight composites and high performance materials 2. In the case of sustainable polymers 3, the addition of nanoparticles may well sufficiently enhance properties such that the portfolio of possible applications is greatly increased. Most engineered nanoparticles are highly stable and these exist as nanoparticles prior to compounding with the polymer resin. They remain as nanoparticles during the active use of the packaging material as well as in the subsequent waste and recycling streams. It is also possible to construct the nanoparticles within the polymer films during processing from organic compounds selected to present minimal or no potential health hazards 4. In both cases the characterisation of the resultant nanostructured polymers presents a number of challenges. Foremost amongst these are the coupled challenges of the nanoscale of the particles and the low fraction present in the polymer matrix. Very low fractions of nanoparticles are only effective if the dispersion of the particles is good. This continues to be an issue in the process engineering but of course bad dispersion is much easier to see than good dispersion. In this presentation we show the merits of a combined scattering (neutron and x-ray) and microscopy (SEM, TEM, AFM) approach. We explore this methodology using rod like, plate like and spheroidal particles including metallic particles, plate-like and rod-like clay dispersions and nanoscale particles based on carbon such as nanotubes and graphene flakes. We will draw on a range of material systems, many explored in partnership with other members of Napolynet. The value of adding nanoscale particles is that the scale matches the scale of the structure in the polymer matrix. Although this can lead to difficulties in separating the effects in scattering experiments, the result in morphological studies means that both the nanoparticles and the polymer morphology are revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article investigates the determinants of union inclusiveness towards agency workers in Western Europe, using an index which combines unionization rates with dimensions of collective agreements covering agency workers. Using fuzzy-set Qualitative Comparative Analysis, we identify two combinations of conditions leading to inclusiveness: the ‘Northern path’ includes high union density, high bargaining coverage and high union authority, and is consistent with the power resources approach. The ‘Southern path’ combines high union authority, high bargaining coverage, statutory regulations of agency work and working-class orientation, showing that ideology rather than institutional incentives shapes union strategies towards the marginal workforce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful innovation diffusion process may well take the form of knowledge transfer process. Therefore, the primary objectives of this paper include: first, to evaluate the interrelations between transfer of knowledge and diffusion of innovation; and second to develop a model to establish a connection between the two. This has been achieved using a four-step approach. The first step of the approach is to assess and discuss the theories relating to knowledge transfer (KT) and innovation diffusion (ID). The second step focuses on developing basic models for KT and ID, based on the key theories surrounding these areas. A considerable amount of literature has been written on the association between knowledge management and innovation, the respective fields of KT and ID. The next step, therefore, explores the relationship between innovation and knowledge management in order to identify the connections between the latter, i.e. KT and ID. Finally, step four proposes and develops an integrated model for KT and ID. As the developed model suggests the sub-processes of knowledge transfer can be connected to the innovation diffusion process in several instances as discussed and illustrated in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse coding aims to find a more compact representation based on a set of dictionary atoms. A well-known technique looking at 2D sparsity is the low rank representation (LRR). However, in many computer vision applications, data often originate from a manifold, which is equipped with some Riemannian geometry. In this case, the existing LRR becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to applications. In this paper, we generalize the LRR over the Euclidean space to the LRR model over a specific Rimannian manifold—the manifold of symmetric positive matrices (SPD). Experiments on several computer vision datasets showcase its noise robustness and superior performance on classification and segmentation compared with state-of-the-art approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.