71 resultados para Bobath concept-NDT
Resumo:
Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
Resumo:
The burden (economic and medicinal) of acute and chronic gut disorders continues to increase. As efficient therapies are few, attention has turned towards the use of so-called functional foods to mediate against gut disorder. These target particular genera of gut bacteria seen as beneficial, e.g. bifidobacteria, lactobacilli. The use of products containing live microbial species (probiotics) has a long history of use in humans and many trials have been reported as 'positive'. Taking the view that positive components of the gut flora already exist in the intestinal tract, the prebiotic concept has been developed. Here, dietary carbohydrates have a selective metabolism within the gut flora thereby shifting the community towards a more advantageous structure. Conventional fibres like pectins, cellulose, etc. are not selectively metabolised by gut bacteria. However, certain oligosaccharides do have this capability. Most research has been conducted with fructooligosaccharides, like inulin, which have a powerful bifidogenic effect. Trials are ongoing to determine the clinical benefits of prebiotic use. Intestinal disorders like ulcerative colitis, gastroenteritis and irritable bowel syndrome are particular targets. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs)-modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system.
Resumo:
The eMinerals project has established an integrated compute and data minigrid infrastructure together with a set of collaborative tools,. The infrastructure is designed to support molecular simulation scientists working together as a virtual organisation aiming to understand a number of strategic processes in environmental science. The eMinerals virtual organisation is now working towards applying this infrastructure to tackle a new generation of scientific problems. This paper describes the achievements of the eMinerals virtual organisation to date, and describes ongoing applications of the virtual organisation infrastructure.
Resumo:
Economic mechanisms enhance technological solutions by setting the right incentives to reveal information about demand and supply accurately. Market or pricing mechanisms are ones that foster information exchange and can therefore attain efficient allocation. By assigning a value (also called utility) to their service requests, users can reveal their relative urgency or costs to the service. The implementation of theoretical sound models induce further complex challenges. The EU-funded project SORMA analyzes these challenges and provides a prototype as a proof-of-concept. In this paper the approach within the SORMA-project is described on both conceptual and technical level.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).