38 resultados para Biological control agents
Resumo:
Controlling Armillaria infections by physical and chemical methods alone is at present inadequate, ineffective, or impractical. Effective biological control either alone or in integration with another control strategy appears necessary. Biological control agents of Armillaria function by the antagonists inhibiting or preventing its rhizomorphic and mycelial development, by limiting it to substrate already occupied, by actively pre-empting the substrate, or by eliminating the pathogen from substrate it has already occupied. Among the most thoroughly investigated antagonists of Armillaria are Trichoderma species. Depending on the particular isolate of a Trichoderma species, control may be achieved by competition, production of antibiotics, or by mycoparasitism. The level of control is also influenced by the growth and carrier substrate of the antagonist, time of application in relation to the occurrence of the disease, and several environmental conditions. Among a range of the other antagonists are several cord-forming fungi and an isolate of Dactylium dendroides. Integrating biological methods with an appropriate method of chemical could control the disease more effectively. However it is essential to determine whether the antagonist or the fungicide should be applied first, and the time interval between.
Resumo:
This unique book is the first of its kind to explore the diversity of interactions between insects and birds. A group of international experts enthusiastically agreed to contribute to the four sections of the book following the success of an Entomological Club Conference on Insect and Bird Interactions. The first section covers population management issues, discussing effects on birds highly relevant to the planting of large areas of GM crops, new opportunities for increasing biodiversity in farming landscapes, and the novel aspect of managing insects by exploiting birds as biological control agents. This is followed by a section discussing the effects of insecticides on bird populations, and includes a contribution from the RSPB, as well as a re-appraisal of the effects of DDT on raptors. Next, the foraging behaviour of birds on insects is discussed, with chapters also on 'warning' coloration in insects and learning by birds. The first chapter in this section is unusual in having been written by an ophthalmologist and covers colour vision in birds, more specifically ultraviolet vision in relation to insect coloration. Finally, the authors look at insects that are parasites of birds or feed on the detritus in nests, and review the ecology and evolution of the co-adaptation of insect ectoparasites with birds. Insect and Bird Interactions is unparalleled in scope and coverage and will be of interest to entomologists, ornithologists, and ecologists alike.
Resumo:
Synthetic pyrethroid insecticides are degraded almost entirely by ultraviolet (UV)-catalysed oxidation. A bioassay using the beetle Tribolium confusum duVal caged on bandages soaked in 0.04% a.i. cypermethrin showed large differences in residual insecticide-life under three plastic films available for cladding polytunnels. Cypermethrin exposed to a UV film that transmitted 70% of UVB and 80% of UVA killed all beetles for 8 weeks, compared to only 3 weeks for cypermethrin exposed in a clear plastic envelope. Cypermethrin under a UV-absorbing film that reduced the transmission of UVB and UVA to 14% and 50%, respectively, gave a complete kill for 17 weeks. Reducing the transmission of UVB to virtually zero, and that of UVA to only 3%, using a UV-opaque film prolonged the effective life of the cypermethrin residue to 26 weeks, and some beetles were still killed for a further 11 weeks. Even after this time, beetles exposed to cypermethrin from the UV-opaque treatment were still affected by the insecticide, and only showed near-normal mobility after 24 months of pesticide exposure to the UV-opaque film. These results have implications for the recommended intervals between cypermethrin treatment and crop harvest, and on the time of introduction of insect-based biological control agents, when UV-opaque films are used in commercial horticulture.
Resumo:
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.
Resumo:
In dual cultures, the supernatant filtrate of the biological control agent Bacillus subtilis was evaluated against (Fusarium oxysporum f.sp. lentis) the causal organism of lentil vascular wilt. The antagonistic activity was evaluated as percent reduction of fungal growth (certainly due, in part, to the antifungal metabolites produced by the antagonistic bacterium). The in-vitro experiments showed that B. subtilis filtrate, whether solid or liquid media, had a strong inhibiting activity on the spore germination and mycelial growth of F. oxysporum f. sp. lentis. In a glasshouse experiment, soil was drenched with B. subtilis filtrate at 30 ml/kg (vol/wt) around seedlings of a susceptible lentil line (ILL 4605). In this treatment there was only 31% mortality compared with 100% kill of plants in the control treatment (P≤0.05).
Resumo:
Entomopathogenic bacterial strains Pseudomonas (Flavimonas) oryzihabitans and Xenorhabdus nematophilus, both bacterial symbionts of the entomopathogenic nematodes Steinernema abbasi and S. carpocapsae have been recently used for suppression of soil-borne pathogens. Bacterial biocontrol agents (P. oryzihabitans and X nematophila) have been tested for production of secondary metabolites in vitro and their fungistatic effect,on mycelium and spore development of soil-borne pathogens. Isolates of Pythium spp. and Rhizoctonia solani, the causal agent of cotton damping-off, varied in sensitivity in vitro to the antibiotics phenazine-I-carboxylic acid (PCA), cyanide (HCN) and siderophores produced by bacterial strains shown previously to have potential for biological control of those pathogens. These findings affirm the role of the antibiotics PCA, HCN and siderophores in the biocontrol activity of these entomopathogenic strains and support earlier evidence that mechanisms of secondary metabolites are responsible for suppression of damping-off diseases. In the present studies colonies of R oryzihabitans showed production of PCA with presence of crystalline deposits after six days development and positive production where found as well in the siderophore's assay when X nematophila strain indicated HCN production in the in vitro assays. In vitro antifungal activity showed that bacteria densities of 101 to 10(6)cells/ml have antifungal activity in different media cultures. The results show further that isolates of Pythium spp. and R. solani insensitive to PCA, HCN and siderophores are present in the pathogen population and provide additional justification for the use of mixtures of entomopathogenic strains that employ different mechanisms of pathogen suppression to manage damping-off.
Resumo:
The large pine weevil, Hylobius abietis, is a serious pest of reforestation in northern Europe. However, weevils developing in stumps of felled trees can be killed by entomopathogenic nematodes applied to soil around the stumps and this method of control has been used at an operational level in the UK and Ireland. We investigated the factors affecting the efficacy of entomopathogenic nematodes in the control of the large pine weevil spanning 10 years of field experiments, by means of a meta-analysis of published studies and previously unpublished data. We investigated two species with different foraging strategies, the ‘ambusher’ Steinernema carpocapsae, the species most often used at an operational level, and the ‘cruiser’ Heterorhabditis downesi. Efficacy was measured both by percentage reduction in numbers of adults emerging relative to untreated controls and by percentage parasitism of developing weevils in the stump. Both measures were significantly higher with H. downesi compared to S. carpocapsae. General linear models were constructed for each nematode species separately, using substrate type (peat versus mineral soil) and tree species (pine versus spruce) as fixed factors, weevil abundance (from the mean of untreated stumps) as a covariate and percentage reduction or percentage parasitism as the response variable. For both nematode species, the most significant and parsimonious models showed that substrate type was consistently, but not always, the most significant variable, whether replicates were at a site or stump level, and that peaty soils significantly promote the efficacy of both species. Efficacy, in terms of percentage parasitism, was not density dependent.
Resumo:
Initial applications of 10(4) spores g(-1) of Pasteuria penetrans, and dried neem cake and leaves at 3 and 2% w:w, respectively, were applied to soil in pots. Juveniles of Meloidogyne javanica were added immediately to the pots (500, 5,000 or 10,000) before planting 6-week-old tomato seedlings. The tomatoes were sampled after 64 days; subsequently a second crop was grown for 59 days and a third crop for 67 days without further applications of P. penetrans and neem. There was significantly less root-galling in the P. penetrans combined with neem cake treatment at the end of the third crop and this treatment also had the greatest effect on the growth of the tomato plants. At the end of the third crop, 30% of the females were infected with P. penetrans in those treatments where spores had been applied at the start of the experiment. The effects of neem leaves and neem cake on the nematode population did not persist through the crop sequences but the potential for combining the amendments with a biological control agent such as P. penetrans is worthy of further evaluation.
Resumo:
The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.
Resumo:
Fusarium oxysporum f.sp. lycopersici (Fol) is the causal agent of the Fusarium wilt disease of tomato. Soil fumigant (mainly methyl bromide) applications are in use for its control. With the increasing environmental awareness, biological control methods are under investigation for their effectiveness, including the use of antagonists. Pseudomonas oryzihabitans (=Flavimonas oryzihabitans), a symbiont of the entomopathogenic nematode Steinernema abbasi was investigated as an antagonism of a Fol isolate in two laboratory and two glasshouse experiments. Bacteria and cell-free filtrate antifungal activity were tested both in dual cultures and in broth culture. In pot experiments, suspensions of bacteria in five concentrations (106, 105, 104, 103 and 102 cells/ml) were tested for their ability to control the pathogen at 25±3°C. In all tests the bacterium significantly inhibited the growth of Fol mycelium in vitro. Similar results were obtained when the bacterium was also tested against Fusarium oxysporum f.sp. radicis lycopersici and against Rhizoctonia solani. Moreover, when it was introduced into the soil, it was able to suppress the Fusarium wilt of tomato.
Resumo:
1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.
Resumo:
1. Intra-specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non-hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra-guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.