91 resultados para Biological Warfare
Resumo:
The invasion and infectivity of Meloidogyne javanica juveniles (J2) encumbered with spore of Pasteuria Penetrans were influenced by the temperature and the time J2 were in the soil before exposure to roots. The percentage of infected females decreased as the time juveniles spent in soil increased. When spore encumbered J2 were maintained at 30 degrees C the decrease in infection was greater than that at 18 degrees C. The thermal time requirements and the base temperature for P. penetrans development were estimated. The rate of development followed an exponential curve between 21 and 36 degrees C and the base temperature for development was estimated by extrapolation to be 18.5 degrees C. The effect of integrating a nematode resistant tomato cultivar with the biocontrol agent P. penetrans also was investigated. The ability of the biocontrol agent to reduce numbers of root-knot nematodes was dependent on the densities of the nematode and P. penetrans spores in the soil.
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The microbial fermentability, ruminal degradability and digestibility of 48 maize silages were determined using in vitro gas production (GP), in situ degradability and in vitro digestibility procedures. The silages were produced from forage maize harvested throughout the summer of 1998, and represent a wide range of physiological maturities. Large variations among samples were observed for all biological parameters, with the exception of in vitro digestibility and the asymptote of in vitro GP. The potential of near infrared reflectance spectroscopy (NIRS) to predict the biological parameters measured was determined by regression of the biological data against the respective spectral profile. NIRS demonstrated only a moderate ability (R-2 > 0.60-0.80) to predict in vitro digestibility, modelled kinetics of gas production (excluding the asymptote of gas production) and the modelled ruminally soluble dry matter (DM) fraction. Calibration statistics for remaining biological parameters were unacceptably poor (R-2 = 0.60). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.
Resumo:
Weeds are major constraints on crop production, yet as part of the primary producers within farming systems, they may be important components of the agroecosystem. Using published literature, the role of weeds in arable systems for other above-ground trophic levels are examined. In the UK, there is evidence that weed flora have changed over the past century, with some species declining in abundance, whereas others have increased. There is also some evidence for a decline in the size of arable weed seedbanks. Some of these changes reflect improved agricultural efficiency, changes to more winter-sown crops in arable rotations and the use of more broad-spectrum herbicide combinations. Interrogation of a database of records of phytophagous insects associated with plant species in the UK reveals that many arable weed species support a high diversity of insect species. Reductions in abundances of host plants may affect associated insects and other taxa. A number of insect groups and farmland birds have shown marked population declines over the past 30 years. Correlational studies indicate that many of these declines are associated with changes in agricultural practices. Certainly reductions in food availability in winter and for nestling birds in spring are implicated in the declines of several bird species, notably the grey partridge, Perdix perdix . Thus weeds have a role within agroecosystems in supporting biodiversity more generally. An understanding of weed competitivity and the importance of weeds for insects and birds may allow the identification of the most important weed species. This may form the first step in balancing the needs for weed control with the requirements for biodiversity and more sustainable production methods.
Resumo:
This Study was designed to investigate impact of tannins on in vitro ruminal fermentation parameters as well as relationships between concentration and in vitro biological activity of tannins present in tree fruits. Dry and mature fruits of known phenolic content harvested from Acacia nilotica, A. erubescens, A. erioloba, A. sieberiana, Piliostigima thonningii and Dichrostachys cinerea tree species were fermented with rumen fluid in vitro with or without polyethylene glycol (PEG). Correlation between in vitro biological activity and phenolic concentration was determined. Polyethylene glycol inclusion increased Cumulative gas production from all fruit substrates. The largest Increase (225%) after 48 h incubation was observed in D. cinerea fruits while the least (12.7%) increase was observed in A. erubescens fruits. Organic matter degradability (48 h) was increased by PEG inclusion for all tree species except A. erubescens and P. thonningii. For D. cinerea fruits, colorimetric assays were poorly correlated to Increases In gas production due to PEG treatment. Ytterbium precipitable phenolics (YbPh) were also poorly correlated with response to PEG for A. erioloba and P. thonningii fruits. However, YbPh were strongly and positively correlated to the increase In Cumulative gas production due to PEG for A. erubescens and A. nilotica. Folin-Ciocalteau assayed phenolics (SPh) were not correlated to response to PEG in P. thonningii and A. sieberiana. It was Concluded that the PEG effect oil in vitro fermentation was closely related to some measures of phenolic concentration but the relationships varied with tree species.
Resumo:
Biological emergencies such as the appearance of an exotic transboundary or emerging disease can become disasters. The question that faces Veterinary Services in developing countries is how to balance resources dedicated to active insurance measures, such as border control, surveillance, working with the governments of developing countries, and investing in improving veterinary knowledge and tools, with passive measures, such as contingency funds and vaccine banks. There is strong evidence that the animal health situation in developed countries has improved and is relatively stable. In addition, through trade with other countries, developing countries are becoming part of the international animal health system, the status of which is improving, though with occasional setbacks. However, despite these improvements, the risk of a possible biological disaster still remains, and has increased in recent times because of the threat of bioterrorism. This paper suggests that a model that combines decision tree analysis with epidemiology is required to identify critical points in food chains that should be strengthened to reduce the risk of emergencies and prevent emergencies from becoming disasters.
Resumo:
An isolate of Gliocladium virens from disease affected soil in a commercial tomato greenhouse proved highly antagonistic to Fusarium oxysporum f.sp. lycopersici, used together with an isolate of the nematophagus fungus Verticillium chlamydosporium. Significant disease control was obtained when young mycelial preparation (on a food-base culture) of the G. virens together with V. chlamydosporium was applied in potting medium. Similar results were observed when a Trichoderma harzianum isolate was treated in combination with the V. chlamydosporium isolate. Most promising, in terms of minimizing the Fusarium wilt of tomato incidence, was also the effect of the bacteria associated with entomopathogenic nematodes (Steinernema spp.), Pseudomonas oryzihabitans and Xenorhabdus nematophilus.
Resumo:
Rhizoctonia solani is a causal agent of damping-off of may cultivated plants. An isolate of the bacterium Pseudomonas oryzihabitans, symbiotically associated with the entomopathogenic nematode Steinernema abbasi, strongly inhibited the pathogen in vitro. The bacterium was firmly attached onto fungus mycelia and degraded the cell walls of the pathogen. In greenhouse experiments, bacterial suspension in sterile water applied in the soil, effectively controlled damping-off of radish.