31 resultados para Biological Activity
Resumo:
Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.
Resumo:
Citrus flavonoids have been investigated for their biological activity, with both anti-inflammatory and -carcinogenic effects being reported. However, little information is known on the bioavailability of these compounds in vivo. The objectives of this study were to determine the tissue distribution of naringenin after gastric gavage of [H-3]-naringenin to rats. Unlabelled naringenin was also used to quantify the levels of naringenin and its major metabolites in tissues and eliminated in the urine and faeces. Significant radioactivity was detected in the plasma as well as all tissues examined 2 h post-gavage. After 18 h, higher levels of radioactivity were retained in plasma and tissues (55% of the administered radioactivity). Investigation of the nature of metabolites, using unlabelled naringenin, revealed that the glucuronides were the major components in plasma, tissues and urine, in addition to the colonic metabolite 3-(4- hydroxyphenyl) propionic acid, detected in the urine. The aglycone was the form extensively retained in tissues after 18 h post-gavage. Total identified metabolites detected after 18 h in most tissues were only 1-5% of the levels detected after 2 h. However, the brain, lungs and heart retained 27, 20 and 11%, respectively, relative to the total metabolites detected at 2 h. While radioactive detection suggests increased levels of breakdown products of naringenin after 18 h versus 2 h, the products identified using unlabelled naringenin are not consistent with this, suggesting that a predominant proportion of the naringenin breakdown products at 18 h are retained as smaller decomposition molecules which cannot yet be identified.
Resumo:
A range of diterpene ester ligands with selective biological activity (e.g., irritant but not tumour promoting) were tested for their ability to induce Epstein-Barr virus (EBV) early antigen expression in the lymphoblastoid Raji cell line. All substituted compounds were found to be capable of inducing some antigen expression at nM−μM levels, including desacetyl-α-sapinine, a compound largely devoid of biological activity. The non-promoting, fluorescent compound, sapintoxin A, was virtually equipotent with promoting compounds. It was concluded that, although the assay has relevance to the specific condition of chronic diterpene ester exposure occurring in conjunction with high EBV infection rates, there was relatively poor correlation with mouse skin tumour promoting potential.
Resumo:
This study focused on effects of structure, content and biological activity of condensed tannins (CT) in leaves, stems and whole plant of sainfoin (Onobrychis viciifolia) on its in vivo and in situ digestive characteristics in sheep. Sainfoin was studied as fresh forage during the first vegetation cycle at two phenological stages (i.e., end of flowering and green seeds) and during the second vegetation cycle (i.e., start of flowering). The feeding experiment used 12 sheep; with six dosed, through the rumen cannula, with polyethylene glycol (PEG) to neutralise CT effects. Organic matter digestibility (OMD), total tract N disappearance and N balance were measured in sheep fed the whole plant. The residues of dry matter (DM) and N from nylon bags suspended in the rumen were determined on leaves and stems. Intestinal digestibility was measured using other, intestinally fistulated sheep. PEG addition and vegetation cycle increased total tract N digestibility (P<0.001) but PEG affected OMD only at the end of flowering. PEG inactivated the CT and increased urinary N excretion (P<0.05) but this was offset by lower faecal N excretion (P<0.001). Feeding sainfoin can be used to alter the form of excreted N (i.e., urine vs faeces) and thus potentially reduce environmental N pollution without affecting body N retention. Kinetic studies of total N, ammonia N (NH3-N) and volatile fatty acids (VFA) in rumen fluid were made before and 1.5, 3 and 6 h after feeding. Sainfoin CT decreased rumen fluid soluble N (P<0.05) and NH3-N (P<0.01). Ruminal N disappearance (DisN) of leaves or stems was lower in the presence of active CT compared to PEG-inactivated CT (P<0.001) for both vegetation cycles. PEG also increased intestinal digestibility (P<0.05) of leaves and stems. Leaves had lower ruminal DisN, but higher N disappearing from intestine than stems. The biological activity and content of CT in the whole plant decreased as phenological stage increased. Prodelphinidin:procyanidin (PD:PC) ratios of leaves varied with vegetation cycle and phenological stage. The molecular size of CT in the whole plant, as indicated by their mean degree of polymerisation (mDP), was lowest at the start of flowering and coincided with the higher biological activity and content of CT.
Resumo:
Dissolved organic carbon (DOC) concentrations have been rising in streams and lakes draining catchments with organic soils across Northern Europe. These increases have shown a correlation with decreased sulphate and chloride concentrations. One hypothesis to explain this phenomenon is that these relationships are due an increased in DOC release from soils to freshwaters, caused by a decline in pollutant sulphur and sea-salt deposition. We carried out controlled deposition experiments in the laboratory on intact peat and organomineral O-horizon cores to test this hypothesis. Preliminary data showed a clear correlation between the change in soil water pH and change in DOC concentrations, however uncertainty still remains about whether this is due to changes in biological activity or chemical solubility.
Resumo:
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Resumo:
The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.
Resumo:
The hops plant (Humulus lupulus L.) is an essential ingredient in beer and contains a number of potentially bioactive prenylflavonoids, the predominant being the weakly estrogenic isoxanthohumol (Ix), which can be converted to the more strongly estrogenic 8-PN by the colonic microbiota. The aim of this study was to investigate the biological activity of 8-PN and Ix using in vitro models representing key stages of colorectal carcinogenesis, namely cell growth and viability (MTT assay), cell-cycle progression (DNA content assay), DNA damage (Comet assay), and invasion (Matrigel assay). A significant decrease in Caco-2 cell viability was noted after both 8-PN and Ix treatments at the higher doses (40 and 50 μM, respectively) although the impact on cell cycle differed between the two compounds. The decreased cell viability observed after Ix treatment was associated with a concentration-dependent increase in G2/M and an increased sub-G1 cell-cycle fraction, whereas treatment with 8-PN was associated with an elevated G0/G1 and an increased sub-G1 cell-cycle fraction. Significant antigenotoxic activity was noted at all 8-PN concentrations tested (5-40 μM). Although significant antigenotoxic activity was also noted with Ix treatment at ≤25 μM, at a higher dose, Ix itself exerted genotoxic activity. In a dose-dependent manner, both compounds inhibited HT115 cell invasion with reductions up to 52 and 46% for Ix and 8-PN, respectively, in comparison to untreated cells. This study demonstrated that both Ix and its gut microbial metabolite 8-PN exert anticancer effects on models of key stages of colon tumourigenesis.
Resumo:
This paper explores the potential of polysialic acid (PSA) as a carrier for low molecular weight anticancer drugs. A PSA–epirubicin (Epi) conjugate was synthesized and compared against Epi conjugates containing established carriers, namely: N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly(ethylene glycol) (PEG) and polyglutamic acid (PGA). Biological assessments in the breast cancer cell line MCF-7 and in the anthracycline resistant MCF-7/DX showed that the PSA–Epi conjugate had the highest activity (40% and 30% cell death in the two cell lines at 1 mM Epi equiv., respectively). FACS studies confirmed internalization of all conjugates by cholesterol-dependent endocytosis. PSA–Epi showed release of Epi (40% at 5 h) when incubated with lysosome extracts. In vivo evaluation showed that all conjugates had a significantly longer half-life compared to free Epi. This study also allowed an investigation on the effect of the polymeric carrier on the biological activity of a conjugate, with the biodegradability of the carrier emerging as an important feature.
Resumo:
Streamwater nitrate dynamics in the River Hafren, Plynlimon, mid-Wales were investigated over decadal to sub-daily timescales using a range of statistical techniques. Long-term data were derived from weekly grab samples (1984–2010) and high-frequency data from 7-hourly samples (2007–2009) both measured at two sites: a headwater stream draining moorland and a downstream site below plantation forest. This study is one of the first to analyse upland streamwater nitrate dynamics across such a wide range of timescales and report on the principal mechanisms identified. The data analysis provided no clear evidence that the long-term decline in streamwater nitrate concentrations was related to a decline in atmospheric deposition alone, because nitrogen deposition first increased and then decreased during the study period. Increased streamwater temperature and denitrification may also have contributed to the decline in stream nitrate concentrations, the former through increased N uptake rates and the latter resultant from increased dissolved organic carbon concentrations. Strong seasonal cycles, with concentration minimums in the summer, were driven by seasonal flow minimums and seasonal biological activity enhancing nitrate uptake. Complex diurnal dynamics were observed, with seasonal changes in phase and amplitude of the cycling, and the diurnal dynamics were variable along the river. At the moorland site, a regular daily cycle, with minimum concentrations in the early afternoon, corresponding with peak air temperatures, indicated the importance of instream biological processing. At the downstream site, the diurnal dynamics were a composite signal, resultant from advection, dispersion and nitrate processing in the soils of the lower catchment. The diurnal streamwater nitrate dynamics were also affected by drought conditions. Enhanced diurnal cycling in Spring 2007 was attributed to increased nitrate availability in the post-drought period as well as low flow rates and high temperatures over this period. The combination of high-frequency short-term measurements and long-term monitoring provides a powerful tool for increasing understanding of the controls of element fluxes and concentrations in surface waters.
Resumo:
Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P,0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.
Resumo:
Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.
Resumo:
Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change
Resumo:
High ionic calcium concentration and the absence of caseinmacropeptides (CMP) in acid whey could influence the production of angiotensin-I-converting enzyme (ACE)-inhibitory hydrolysate and its bioactivity through the application of the integrative process. Therefore, the aim of the present study was to produce a hydrolysate from acid whey applying the integrative process. Process performance was evaluated based on protein adsorption capacity and conversion in relation to ACE-inhibitory activity (ACEi%) and ionic calcium concentration. Hydrolysates with high potency of their biological activity were produced (IC50 = 206-353 μg mL-1). High ionic calcium concentration in acid whey contributed to ACE-inhibitory activity. However, low β-lactoglobulin adsorption and conversion was observed. Optimisation of the resin volume increased the adsorption of β-lactoglobulin significantly but with lower selectivity. The changes in conversion value were not significant even at higher concentration of enzyme. Several ACE inhibitors derived from β-lactoglobulin that were identified before in sweet whey hydrolysates such as, IIAEKT, IIAE, IVTQ, LIVTQ, LIVTQT, LDAQ and LIVT were found. New peptides such as, SNICNI and ECCHGD derived from α-lactalbumin and BSA respectively were identified.
Resumo:
The iron oxyallyl carbocation generated from 2,7-dibromocycloheptanone was induced to undergo [4 + 3] cycloaddition reactions with various furans, affording a series of 12-oxatricyclo-[4.4.1.1(2,5)]-dodec-3-en-11-one adducts. Similar methodology was used to prepare two additional cycloadducts using menthofuran and two homologous aliphatic dibromoketones. Dipolar cycloaddition of ozone to the adducts afforded the corresponding secondary ozonides (i.e., 1,2,4-trioxolanes) in variable yields. Ozonides were investigated by quantum mechanics at the B3LYP/6-31+G* level to study structural features including close contacts which may be responsible for enhancing ozonide stability. The effect of these ozonides and their corresponding precursor cycloadducts upon radicle growth of both Sorghum bicolor and Cucumis sativus was evaluated at 5.0 x 10(-4) mol L-1. The most active cycloadducts and ozonides were also evaluated against the weed species Ipomoea grandifolia and Brachiaria decumbens, and the results are discussed. Compared to ozonides previously synthesized in our laboratory, the new ozonides described herein present improved plant growth regulatory activity.