45 resultados para Biodegradation of aromatic hydrocarbons
Resumo:
Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown—study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 µm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre–matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying ‘spongy’ medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location—as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin.
Resumo:
In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.
Resumo:
The effects of varying the alkali metal cation in the high-temperature nucleophilic synthesis of a semi-crystalline, aromatic poly(ether ketone) have been systematically investigated, and striking variations in the sequence-distributions and thermal characteristics of the resulting polymers were found. Polycondensation of 4,4'-dihydroxybenzophenone with 1,3-bis(4-fluorobenzoyl)benzene in diphenylsulfone as solvent, in the presence of an alkali metal carbonate M2CO3 (M= Li, Na, K, or Rb) as base, affords a range of different polymers that vary in the distribution pattern of 2-ring and 3-ring monomer units along the chain. Lithium carbonate gives an essentially alternating and highly crystalline polymer, but the degree of sequence-randomisation increases progressively as the alkali metal series is descended, with rubidium carbonate giving a fully random and non-thermally-crystallisable polymer. Randomisation during polycondensation is shown to result from reversible cleavage of the ether linkages in the polymer by fluoride ions, and an isolated sample of alternating-sequence polymer is thus converted to a fully randomised material on heating with rubidium fluoride.
Resumo:
A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.
Resumo:
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.
Resumo:
Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
We used a battery of biomarkers in fish to study the effects of the extensive dredging in Goteborg harbor situated at the river Gota alv estuary, Sweden. Eelpout (Zoarces viviparus) were sampled along a gradient into Goteborg harbor, both before and during the dredging. Biomarker responses in the eelpout before the dredging already indicated that fish in Goteborg harbor are chronically affected by pollutants under normal conditions compared to those in a reference area. However, the results during the dredging activities clearly show that fish were even more affected by remobilized pollutants. Elevated ethoxyresorufin-O-deethylase activities and cytochrome P4501A levels indicated exposure to polycyclic aromatic hydrocarbons. Elevated metallothionein gene expression indicated an increase in metal exposure. An increase in general cell toxicity, measured as a decrease in lysosomal membrane stability, as well as effects on the immune system also could be observed in eelpout sampled during the dredging. The results also suggest that dredging activities in the Gota alv estuary can affect larger parts of the Swedish western coast than originally anticipated. The present study demonstrates that the application of a set of biomarkers is a useful approach in monitoring the impact of anthropogenic activities on aquatic environments.
Resumo:
Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 ( MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by alpha-and beta-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that frequently accumulate in soils. There is therefore a requirement to determine their levels in contaminated environments for the purposes of determining impacts on human health. PAHs are a suite of individual chemicals, and there is an ongoing debate as to the most appropriate method for assessing the risk to humans from them. Two methods predominate: the surrogate marker approach and the toxic equivalency factor. The former assumes that all chemicals in a mixture have an equivalent toxicity. The toxic equivalency approach estimates the potency of individual chemicals relative to the usually most toxic Benzo(a)pyrene. The surrogate marker approach is believed to overestimate risk and the toxic equivalency factor to underestimate risk. When analysing the risks from soils, the surrogate marker approach is preferred due to its simplicity, but there are concerns because of the potential diversity of the PAH profile across the range of impacted soils. Using two independent data sets containing soils from 274 sites across a diverse range of locations, statistical analysis was undertaken to determine the differences in the composition of carcinogenic PAH between site locations, for example, rural versus industrial. Following principal components analysis, distinct population differences were not seen between site locations in spite of large differences in the total PAH burden between individual sites. Using all data, highly significant correlations were seen between BaP and other carcinogenic PAH with the majority of r2 values > 0.8. Correlations with the European Food Standards Agency (EFSA) summed groups, that is, EFSA2, EFSA4 and EFSA8 had even higher correlations (r2 > 0.95). We therefore conclude that BaP is a suitable surrogate marker to represent mixtures of PAH in soil during risk assessments.
Resumo:
The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant-microbe interactions with their best known function as signals in the nitrogen fixing legume-rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log K-oc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log K-oc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 mu g g(-1)) was biodegraded without a detectable lag phase with concentrations reduced to 0.13 +/- 0.01 mu g g(-1) at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of similar to 24 with concentrations reduced to 4.5 +/- 1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4 x 10(6) MPNg(-1) (naringenin) and 7.9 x 10(5) MPNg(-1) (formononetin) catabolic microbes. Formononetin concentration had no significant (p > 0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p = 0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.