36 resultados para Beta-cell Function
Resumo:
Aims To investigate the relationship between adiposity and plasma free fatty acid levels and the influence of total plasma free fatty acid level on insulin sensitivity and β-cell function. Methods An insulin sensitivity index, acute insulin response to glucose and a disposition index, derived from i.v. glucose tolerance minimal model analysis and total fasting plasma free fatty acid levels were available for 533 participants in the Reading, Imperial, Surrey, Cambridge, Kings study. Bivariate correlations were made between insulin sensitivity index, acute insulin response to glucose and disposition index and both adiposity measures (BMI, waist circumference and body fat mass) and total plasma free fatty acid levels. Multivariate linear regression analysis was performed, controlling for age, sex, ethnicity and adiposity. Results After adjustment, all adiposity measures were inversely associated with insulin sensitivity index (BMI: β = −0.357; waist circumference: β = −0.380; body fat mass: β = −0.375) and disposition index (BMI: β = −0.215; waist circumference: β = −0.248; body fat mass: β = −0.221) and positively associated with acute insulin response to glucose [BMI: β = 0.200; waist circumference: β = 0.195; body fat mass β = 0.209 (P values <0.001)]. Adiposity explained 13, 4 and 5% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. After adjustment, no adiposity measure was associated with free fatty acid level, but total plasma free fatty acid level was inversely associated with insulin sensitivity index (β = −0.133), acute insulin response to glucose (β = −0.148) and disposition index [β = −0.218 (P values <0.01)]. Plasma free fatty acid concentration accounted for 1.5, 2 and 4% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. Conclusions Plasma free fatty acid levels have a modest negative association with insulin sensitivity, β-cell secretion and disposition index but no association with adiposity measures. It is unlikely that plasma free fatty acids are the primary mediators of obesity-related insulin resistance or β-cell dysfunction.
Resumo:
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.
Resumo:
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.
Resumo:
The effects of a new titanocene compound with an ansa ligand in the cyclopentadienyl rings, the 1,2-di(cyclopentadienyl)-1,2-di(p-NNdimethylaminophenyl)-ethanediyl] titanium dichloride (TITANOCENE X), on the growth and differentiation of granulocyte-macrophage progenitor cells [colony-forming unit-granulocyte-macrophage (CFU-GM)] and Natural killer (NK) cell activity in Ehrlich's ascites tumour (EAT)-bearing mice were studied. Myelosuppression concomitant with increased numbers of spleen CFU-GM was observed in tumour-bearing mice. Treatment of these animals with TITANOCENE X (2.5-50mg/kg/day) produced an increase in myelopoicsis, in a dose-dependent manner, and reduced spleen colony formation. In addition, the treatment of EAT-bearing mice with 3 doses of 20 or 50 mg/kg TITANOCENE X restored to normal values the reduced Natural killer cell function observed during tumour growth. In parallel, TITANOCENE X prolonged, in a dose-dependent manner, the survival of mice inoculated with Ehrlich's ascites tumour. The highest dose of 50 mg/kg prolonged in 50% the survival time of EAT-bearing mice, compared to non-treated tumour-bearing controls. In comparison with previous results from our laboratory addressing the effects of titanocenes on haematopoiesis, we observed with TITANOCENE X a similar effective profile as for bis(cyclopentadienyl) dithiocyanate titanium(IV), being both less effective than di(cyclopentadienyl) dichloro titanium(IV), since the latter not only prolonged, but also increased the rate of survival. These differences in efficacy may be due to the nature of the ansa-cyclopentadienyl ligand used in TITANOCENE X, since the C, bridge between the two cyclopentadienyl groups will increase the hydrolytic stability by an organometallic chelate effect. Also, the introduction of two dimethylamino substituents increases the water solubility of TITANOCENE X when compared to titanocene dichloride itself (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: Huntington disease ( HD) is characterized by the progressive death of medium spiny dopamine receptor bearing striatal GABAergic neurons. In addition, microglial activation in the areas of neuronal loss has recently been described in postmortem studies. Activated microglia are known to release neurotoxic cytokines, and these may contribute to the pathologic process. Methods: To evaluate in vivo the involvement of microglia activation in HD, the authors studied patients at different stages of the disease using [ C-11]( R)-PK11195 PET, a marker of microglia activation, and [ C-11] raclopride PET, a marker of dopamine D2 receptor binding and hence striatal GABAergic cell function. Results: In HD patients, a significant increase in striatal [ C-11]( R)-PK11195 binding was observed, which significantly correlated with disease severity as reflected by the striatal reduction in [ C-11] raclopride binding, the Unified Huntington's Disease Rating Scale score, and the patients' CAG index. Also detected were significant increases in microglia activation in cortical regions including prefrontal cortex and anterior cingulate. Conclusions: These [ C-11]( R)-PK11195 PET findings show that the level of microglial activation correlates with Huntington disease ( HD) severity. They lend support to the view that microglia contribute to the ongoing neuronal degeneration in HD and indicate that [ C-11]( R)-PK11195 PET provides a valuable marker when monitoring the efficacy of putative neuroprotecting agents in this relentlessly progressive genetic disorder.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Platelet endothelial cell adhesion molecule-1 (CD31) is a 130-kDa glycoprotein receptor present on the surface of platelets, neutrophils, monocytes, certain T-lymphocytes, and vascular endothelial cells. CD31 is involved in adhesion and signal transduction and is implicated in the regulation of a number of cellular processes. These include transendothelial migration of leukocytes, integrin regulation, and T-cell function, although its function in platelets remains unclear. In this study, we demonstrate the ability of the platelet agonists collagen, convulxin, and thrombin to induce tyrosine phosphorylation of CD31. Furthermore, we show that this event is independent of platelet aggregation and secretion and is accompanied by an increase in surface expression of CD31. A kinase capable of phosphorylating CD31 was detected in CD31 immunoprecipitates, and its activity was increased following activation of platelets. CD31 tyrosine phosphorylation was reduced or abolished by the Src family kinase inhibitor PP2, suggesting a role for these enzymes. In accordance with this, each of the Src family members expressed in platelets, namely Fyn, Lyn, Src, Yes, and Hck, was shown to co-immunoprecipitate with CD31. The involvement of Src family kinases in this process was confirmed through the study of mouse platelets deficient in Fyn.
Resumo:
Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P = 0.05) and this improved further with addition of collagen IV (P = 0.01). Oxidised gels presented larger internal pores (diameter: 0.2 - 0.8 microm) than unmodified gels (pore diameter: 0.05 - 0.1 microm) and were significantly less stiff (P = 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with beta 1- and beta 3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLC gamma 2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in alpha-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for alpha-granule secretion and therefore may play a central role in the regulation of platelet function. (Blood. 2008; 112: 4523-4531)
Resumo:
In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.
Resumo:
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor 'remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell, surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is Possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation. (C) 2005 by The American Society of Hematology.