30 resultados para Benedict, Saint, Abbot of Monte Cassino.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is turned to the advanced Monte Carlo methods for realistic image creation. It offers a new stratified approach for solving the rendering equation. We consider the numerical solution of the rendering equation by separation of integration domain. The hemispherical integration domain is symmetrically separated into 16 parts. First 9 sub-domains are equal size of orthogonal spherical triangles. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangles, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections of unit square into an orthogonal spherical triangle and into a spherical quadrangle are derived and used to generate sampling points. Then, the symmetric sampling scheme is applied to generate the sampling points distributed over the hemispherical integration domain. The necessary transformations are made and the stratified Monte Carlo estimator is presented. The rate of convergence is obtained and one can see that the algorithm is of super-convergent type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is directed to the advanced parallel Quasi Monte Carlo (QMC) methods for realistic image synthesis. We propose and consider a new QMC approach for solving the rendering equation with uniform separation. First, we apply the symmetry property for uniform separation of the hemispherical integration domain into 24 equal sub-domains of solid angles, subtended by orthogonal spherical triangles with fixed vertices and computable parameters. Uniform separation allows to apply parallel sampling scheme for numerical integration. Finally, we apply the stratified QMC integration method for solving the rendering equation. The superiority our QMC approach is proved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of forecast ensembles to probabilistic weather prediction has spurred considerable interest in their evaluation. Such ensembles are commonly interpreted as Monte Carlo ensembles meaning that the ensemble members are perceived as random draws from a distribution. Under this interpretation, a reasonable property to ask for is statistical consistency, which demands that the ensemble members and the verification behave like draws from the same distribution. A widely used technique to assess statistical consistency of a historical dataset is the rank histogram, which uses as a criterion the number of times that the verification falls between pairs of members of the ordered ensemble. Ensemble evaluation is rendered more specific by stratification, which means that ensembles that satisfy a certain condition (e.g., a certain meteorological regime) are evaluated separately. Fundamental relationships between Monte Carlo ensembles, their rank histograms, and random sampling from the probability simplex according to the Dirichlet distribution are pointed out. Furthermore, the possible benefits and complications of ensemble stratification are discussed. The main conclusion is that a stratified Monte Carlo ensemble might appear inconsistent with the verification even though the original (unstratified) ensemble is consistent. The apparent inconsistency is merely a result of stratification. Stratified rank histograms are thus not necessarily flat. This result is demonstrated by perfect ensemble simulations and supplemented by mathematical arguments. Possible methods to avoid or remove artifacts that stratification induces in the rank histogram are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of complexes appearing in solutions containing oppositely charged polyelectrolytes has been investigated by Monte Carlo simulations using two different models. The polyions are described as flexible chains of 20 connected charged hard spheres immersed in a homogenous dielectric background representing water. The small ions are either explicitly included or their effect described by using a screened Coulomb potential. The simulated solutions contained 10 positively charged polyions with 0, 2, or 5 negatively charged polyions and the respective counterions. Two different linear charge densities were considered, and structure factors, radial distribution functions, and polyion extensions were determined. A redistribution of positively charged polyions involving strong complexes formed between the oppositely charged polyions appeared as the number of negatively charged polyions was increased. The nature of the complexes was found to depend on the linear charge density of the chains. The simplified model involving the screened Coulomb potential gave qualitatively similar results as the model with explicit small ions. Finally, owing to the complex formation, the sampling in configurational space is nontrivial, and the efficiency of different trial moves was examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monte Carlo field-theoretic simulations (MCFTS) are performed on melts of symmetric diblock copolymer for invariant polymerization indexes extending down to experimentally relevant values of N̅ ∼ 10^4. The simulations are performed with a fluctuating composition field, W_−(r), and a pressure field, W_+(r), that follows the saddle-point approximation. Our study focuses on the disordered-state structure function, S(k), and the order−disorder transition (ODT). Although shortwavelength fluctuations cause an ultraviolet (UV) divergence in three dimensions, this is readily compensated for with the use of an effective Flory−Huggins interaction parameter, χ_e. The resulting S(k) matches the predictions of renormalized one-loop (ROL) calculations over the full range of χ_eN and N̅ examined in our study, and agrees well with Fredrickson−Helfand (F−H) theory near the ODT. Consistent with the F−H theory, the ODT is discontinuous for finite N̅ and the shift in (χ_eN)_ODT follows the predicted N̅^−1/3 scaling over our range of N̅.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper employs an extensive Monte Carlo study to test the size and power of the BDS and close return methods of testing for departures from independent and identical distribution. It is found that the finite sample properties of the BDS test are far superior and that the close return method cannot be recommended as a model diagnostic. Neither test can be reliably used for very small samples, while the close return test has low power even at large sample sizes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.