45 resultados para Beets and beet sugar.
Resumo:
It is widely believed that a number of countries, including the EU, engaged in dirty tariffication during the Uruguay Round of trade talks. This article examines the EU’s record on sugar and finds little evidence to substantiate the claim. However, world prices increased between the base period (1986-88) and the date of implementation (1995), and so tariffication resulted in an increase in the tax that would have been charged on sugar imports into the EU. As well, the Special Safeguard provisions meant that a substantial additional levy could be charged.
Resumo:
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton-sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0-15 and 15-30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0-15 and 15-30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus-galli seeds in the 15-30 cm soil horizon compared with the other tillage regimes. Total seedbank (0-30 cm) of P. oleracea was significantly reduced in cotton-sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus-galli. Total seed densities of most annual broad-leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus-galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring-germinating grass weed species, but also prevents establishment of summer-germinating weed species by the early developing crop canopy.
Resumo:
An unstructured mathematical model is proposed to describe the fermentation kinetics of growth, lactic acid production, pH and sugar consumption by Lactobacillus plantarum as a function of the buffering capacity and initial glucose concentration of the culture media. Initially the experimental data of L plantarum fermentations in synthetic media with different buffering capacity and glucose were fitted to a set of primary models. Later the parameters obtained from these models were used to establish mathematical relationships with the independent variables tested. The models were validated with 6 fermentations of L. plantarum in different cereal-based media. In most cases the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of cereal-based probiotic foods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Resumo:
Plants may be regenerated from stomatal cells or protoplasts of such cells. Prior to regeneration the cells or protoplasts may be genetically transformed by the introduction of hereditary material most preferably by a DNA construct which is free of genes which specify resistance to antibiotics. The regeneration step may include callus formation on a hormone-free medium. The method is particularly suitable for sugar beet.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences(continuous cotton, cotton-sugar beet rotation,and continuous tobacco) and herbicide treatments with inter-row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus-galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus)and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus-galli, S. nigrum, and johnsongras(Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter-row hand hoeing,whereas E. crus-galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter-row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre-sowing and pre-emergence herbicide treatments in cotton and pre-transplant in tobacco integrated with inter-row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter-row cultivation; tools of great importance in integrated weed management systems. Keywords: cropping sequence, herbicide, integrated weed management, inter-row cultivation,tillage.
Resumo:
Objective To model the overall and income specific effect of a 20% tax on sugar sweetened drinks on the prevalence of overweight and obesity in the UK. Design Econometric and comparative risk assessment modelling study. Setting United Kingdom. Population Adults aged 16 and over. Intervention A 20% tax on sugar sweetened drinks. Main outcome measures The primary outcomes were the overall and income specific changes in the number and percentage of overweight (body mass index ≥25) and obese (≥30) adults in the UK following the implementation of the tax. Secondary outcomes were the effect by age group (16-29, 30-49, and ≥50 years) and by UK constituent country. The revenue generated from the tax and the income specific changes in weekly expenditure on drinks were also estimated. Results A 20% tax on sugar sweetened drinks was estimated to reduce the number of obese adults in the UK by 1.3% (95% credible interval 0.8% to 1.7%) or 180 000 (110 000 to 247 000) people and the number who are overweight by 0.9% (0.6% to 1.1%) or 285 000 (201 000 to 364 000) people. The predicted reductions in prevalence of obesity for income thirds 1 (lowest income), 2, and 3 (highest income) were 1.3% (0.3% to 2.0%), 0.9% (0.1% to 1.6%), and 2.1% (1.3% to 2.9%). The effect on obesity declined with age. Predicted annual revenue was £276m (£272m to £279m), with estimated increases in total expenditure on drinks for income thirds 1, 2, and 3 of 2.1% (1.4% to 3.0%), 1.7% (1.2% to 2.2%), and 0.8% (0.4% to 1.2%). Conclusions A 20% tax on sugar sweetened drinks would lead to a reduction in the prevalence of obesity in the UK of 1.3% (around 180 000 people). The greatest effects may occur in young people, with no significant differences between income groups. Both effects warrant further exploration. Taxation of sugar sweetened drinks is a promising population measure to target population obesity, particularly among younger adults.
Resumo:
Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential.
Resumo:
The replacement of fat and sugar in cakes is a challenge as they have an important effect on the structural and sensory properties. Moreover, there is the possibility to incorporate an additional value using novel replacers. In this work, inulin and oligofructose were used as fat and sugar replacers, respectively. Different combinations of replacement levels were investigated: fat replacement (0 and 50 %) and sugar replacement (0, 20, 30, 40 and 50 %). Simulated microbaking was carried out to study bubble size distribution during baking. Batter viscosity and weight loss during baking were also analysed. Cake characteristics were studied in terms of cell crumb structure, height, texture and sensory properties. Fat and sugar replacement gave place to batters with low apparent viscosity values. During heating, bubbles underwent a marked expansion in replaced cakes if compared to the control cake. The low batter stability in fat-replaced samples increased bubble movement, giving place to cakes with bigger cells and less height than the control. Sugar-replaced samples had smaller and fewer cells and lower height than the control. Moreover, sugar replacement decreased hardness and cohesiveness and in- creased springiness, which could be related with a denser crumb and an easily crumbled product. Regarding the sensory analysis, a replacement up to 50 % of fat and 30 % of sugar, separately and simultaneously, did not change remarkably the overall acceptability of the cakes. However, the sponginess and the sweetness could be improved in all the replaced cakes, according to the Just About Right scales.
Resumo:
Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.
Resumo:
There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity. Despite having one of the highest degrees of morphological adaptation and a unique physiological specialization, it is possible to induce a re-expression of full (embryogenic) genetic potential in these cells in situ by reversing their highly differentiated nature to produce regenerated plants via a callus stage. The importance of these findings both to stomatal research and to our understanding of cytodifferentiation in plants is discussed.