50 resultados para Bayesian p-values
Resumo:
Feed samples received by commercial analytical laboratories are often undefined or mixed varieties of forages, originate from various agronomic or geographical areas of the world, are mixtures (e.g., total mixed rations) and are often described incompletely or not at all. Six unified single equation approaches to predict the metabolizable energy (ME) value of feeds determined in sheep fed at maintenance ME intake were evaluated utilizing 78 individual feeds representing 17 different forages, grains, protein meals and by-product feedstuffs. The predictive approaches evaluated were two each from National Research Council [National Research Council (NRC), Nutrient Requirements of Dairy Cattle, seventh revised ed. National Academy Press, Washington, DC, USA, 2001], University of California at Davis (UC Davis) and ADAS (Stratford, UK). Slopes and intercepts for the two ADAS approaches that utilized in vitro digestibility of organic matter and either measured gross energy (GE), or a prediction of GE from component assays, and one UC Davis approach, based upon in vitro gas production and some component assays, differed from both unity and zero, respectively, while this was not the case for the two NRC and one UC Davis approach. However, within these latter three approaches, the goodness of fit (r(2)) increased from the NRC approach utilizing lignin (0.61) to the NRC approach utilizing 48 h in vitro digestion of neutral detergent fibre (NDF:0.72) and to the UC Davis approach utilizing a 30 h in vitro digestion of NDF (0.84). The reason for the difference between the precision of the NRC procedures was the failure of assayed lignin values to accurately predict 48 h in vitro digestion of NDF. However, differences among the six predictive approaches in the number of supporting assays, and their costs, as well as that the NRC approach is actually three related equations requiring categorical description of feeds (making them unsuitable for mixed feeds) while the ADAS and UC Davis approaches are single equations, suggests that the procedure of choice will vary dependent Upon local conditions, specific objectives and the feedstuffs to be evaluated. In contrast to the evaluation of the procedures among feedstuffs, no procedure was able to consistently discriminate the ME values of individual feeds within feedstuffs determined in vivo, suggesting that the quest for an accurate and precise ME predictive approach among and within feeds, may remain to be identified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.
Resumo:
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.
Resumo:
Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.
Resumo:
A Bayesian approach to analysing data from family-based association studies is developed. This permits direct assessment of the range of possible values of model parameters, such as the recombination frequency and allelic associations, in the light of the data. In addition, sophisticated comparisons of different models may be handled easily, even when such models are not nested. The methodology is developed in such a way as to allow separate inferences to be made about linkage and association by including theta, the recombination fraction between the marker and disease susceptibility locus under study, explicitly in the model. The method is illustrated by application to a previously published data set. The data analysis raises some interesting issues, notably with regard to the weight of evidence necessary to convince us of linkage between a candidate locus and disease.
Resumo:
The effects of a new titanocene compound with an ansa ligand in the cyclopentadienyl rings, the 1,2-di(cyclopentadienyl)-1,2-di(p-NNdimethylaminophenyl)-ethanediyl] titanium dichloride (TITANOCENE X), on the growth and differentiation of granulocyte-macrophage progenitor cells [colony-forming unit-granulocyte-macrophage (CFU-GM)] and Natural killer (NK) cell activity in Ehrlich's ascites tumour (EAT)-bearing mice were studied. Myelosuppression concomitant with increased numbers of spleen CFU-GM was observed in tumour-bearing mice. Treatment of these animals with TITANOCENE X (2.5-50mg/kg/day) produced an increase in myelopoicsis, in a dose-dependent manner, and reduced spleen colony formation. In addition, the treatment of EAT-bearing mice with 3 doses of 20 or 50 mg/kg TITANOCENE X restored to normal values the reduced Natural killer cell function observed during tumour growth. In parallel, TITANOCENE X prolonged, in a dose-dependent manner, the survival of mice inoculated with Ehrlich's ascites tumour. The highest dose of 50 mg/kg prolonged in 50% the survival time of EAT-bearing mice, compared to non-treated tumour-bearing controls. In comparison with previous results from our laboratory addressing the effects of titanocenes on haematopoiesis, we observed with TITANOCENE X a similar effective profile as for bis(cyclopentadienyl) dithiocyanate titanium(IV), being both less effective than di(cyclopentadienyl) dichloro titanium(IV), since the latter not only prolonged, but also increased the rate of survival. These differences in efficacy may be due to the nature of the ansa-cyclopentadienyl ligand used in TITANOCENE X, since the C, bridge between the two cyclopentadienyl groups will increase the hydrolytic stability by an organometallic chelate effect. Also, the introduction of two dimethylamino substituents increases the water solubility of TITANOCENE X when compared to titanocene dichloride itself (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
This study investigates the price effects of environmental certification on commercial real estate assets. It is argued that there are likely to be three main drivers of price differences between certified and noncertified buildings. These are additional occupier benefits, lower holding costs for investors and a lower risk premium. Drawing upon the CoStar database of U.S. commercial real estate assets, hedonic regression analysis is used to measure the effect of certification on both rent and price. The results suggest that, compared to buildings in the same submarkets, eco-certified buildings have both a rental and sale price premium.
Resumo:
The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.