20 resultados para Baffin Shelf


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously unknown foehn jets have been identified to the east of the Antarctic Peninsula (AP) above the Larsen C Ice Shelf. These jets have major implications for the east coast of the AP, a region of rapid climatic warming and where two large sections of ice shelf have collapsed in recent years. During three foehn events across the AP, leeside warming and drying is seen in new aircraft observations and simulated well by the Met Office Unified Model (MetUM) at ∼1.5 km grid spacing. In case A, weak southwesterly flow and an elevated upwind inversion characterise a highly nonlinear flow regime with upwind flow blocking. In case C strong northwesterly winds characterise a relatively linear case with little upwind flow blocking. Case B resides somewhere between the two in flow regime linearity. The foehn jets – apparent in aircraft observations where available and MetUM simulations of all three cases – are mesoscale features (up to 60 km in width) originating from the mouths of leeside inlets. Through back trajectory analysis they are identified as a type of gap flow. In cases A and B the jets are distinct, being strongly accelerated relative to the background flow, and confined to low levels above the Larsen C Ice Shelf. They resemble the ‘shallow foehn’ of the Alps. Case C resembles a case of ‘deep foehn’, with the jets less distinct. The foehn jets are considerably cooler and moister relative to adjacent regions of calmer foehn air. This is due to a dampened foehn effect in the jet regions: in case A the jets have lower upwind source regions, and in the more linear case C there is less diabatic warming and precipitation along jet trajectories due to the reduced orographic uplift across the mountain passes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost all modern cars can be controlled remotely using a personal communicator (keyfob). However, the degree of interaction between currently available personal communicators and cars is very limited. The communication link is unidirectional and the communication range is limited to a few dozen meters. However, there are many interesting applications that could be supported if a keyfob would be able to support energy efficient bidirectional longer range communication. In this paper we investigate off-the-shelf transceivers in terms of their usability for bidirectional longer range communication. Our evaluation results show that existing transceivers can generally support the required communication ranges but that links tend to be very unreliable. This high unreliability must be handled in an energy efficient way by the keyfob to car communication protocol in order to make off-the-shelf transceivers a viable solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.