17 resultados para BEB electron impact ionization cross section


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is increased interest in developing training in cognitive behaviour therapy (CBT) with children and young people. However, the assessment of clinical competence has relied upon the use of measures such as the Cognitive Therapy Scale-Revised (CTSR: Blackburn et al., 2001) which has been validated to assess competence with adults. The appropriateness of this measure to assess competence when working with children and young people has been questioned. Aim: This paper describes the development and initial evaluation of the Cognitive Behaviour Therapy Scale for Children and Young People (CBTSCYP) developed specifically to assess competence in CBT with children and young people. Method: A cross section of child CBT practitioners (n = 61) were consulted to establish face validity. Internal reliability, convergent validity and discriminative ability were assessed in two studies. In the first, 12 assessors independently rated a single video using both the Cognitive Behaviour Therapy Scale for Children and Young People (CBTS-CYP) and Cognitive Therapy Scale-Revised (CTS-Revised: Blackburn et al., 2001). In the second, 48 different recordings of CBT undertaken with children and young people were rated on both the CBTS-CYP and CTS-R. Results: Face validity and internal reliability of the CBTS-CYP were high, and convergent validity with the CTS-R was good. The CBTS-CYP compared well with the CTSR in discriminative ability. Conclusion: The CBTS-CYP provides an appropriate way of assessing competence in using CBT with children and young people. Further work is required to assess robustness with younger children and the impact of group training in reducing interrater variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.