64 resultados para Attention deficits
Resumo:
The artificial grammar (AG) learning literature (see, e.g., Mathews et al., 1989; Reber, 1967) has relied heavily on a single measure of implicitly acquired knowledge. Recent work comparing this measure (string classification) with a more indirect measure in which participants make liking ratings of novel stimuli (e.g., Manza & Bornstein, 1995; Newell & Bright, 2001) has shown that string classification (which we argue can be thought of as an explicit, rather than an implicit, measure of memory) gives rise to more explicit knowledge of the grammatical structure in learning strings and is more resilient to changes in surface features and processing between encoding and retrieval. We report data from two experiments that extend these findings. In Experiment 1, we showed that a divided attention manipulation (at retrieval) interfered with explicit retrieval of AG knowledge but did not interfere with implicit retrieval. In Experiment 2, we showed that forcing participants to respond within a very tight deadline resulted in the same asymmetric interference pattern between the tasks. In both experiments, we also showed that the type of information being retrieved influenced whether interference was observed. The results are discussed in terms of the relatively automatic nature of implicit retrieval and also with respect to the differences between analytic and nonanalytic processing (Whittlesea Price, 2001).
Resumo:
The visuo-spatial abilities of individuals with Williams syndrome (WS) have consistently been shown to be generally weak. These poor visuo-spatial abilities have been ascribed to a local processing bias by some [R. Rossen, E.S. Klima, U. Bellugi, A. Bihrle, W. Jones, Interaction between language and cognition: evidence from Williams syndrome, in: J. Beitchman, N. Cohen, M. Konstantareas, R. Tannock (Eds.), Language, Learning and Behaviour disorders: Developmental, Behavioural and Clinical Perspectives, Cambridge University Press, New York, 1996, pp. 367-392] and conversely, to a global processing bias by others [Psychol. Sci. 10 (1999) 453]. In this study, two identification versions and one drawing version of the Navon hierarchical processing task, a non-verbal task, were employed to investigate this apparent contradiction. The two identification tasks were administered to 21 individuals with WS, 21 typically developing individuals, matched by non-verbal ability, and 21 adult participants matched to the WS group by mean chronological age (CA). The third, drawing task was administered to the WS group and the typically developing (TD) controls only. It was hypothesised that the WS group would show differential processing biases depending on the type of processing the task was measuring. Results from two identification versions of the Navon task measuring divided and selective attention showed that the WS group experienced equal interference from global to local as from local to global levels, and did not show an advantage of one level over another. This pattern of performance was broadly comparable to that of the control groups. The third task, a drawing version of the Navon task, revealed that individuals with WS were significantly better at drawing the local form in comparison to the global figure, whereas the typically developing control group did not show a bias towards either level. In summary, this study demonstrates that individuals with WS do not have a local or a global processing bias when asked to identify stimuli, but do show a local bias in their drawing abilities. This contrast may explain the apparently contrasting findings from previous studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Reading difficulties (RD) and movement difficulties (MD) co-occur more often in clinical populations than expected for independent disorders. In this study, we investigated the pattern of association between attentional processes, RD and MD in a population of 9 year old school children. Children were screened to identify index groups with RD, MD or both, plus a control group. These groups were then tested on a battery of cognitive attention assessments (TEA-Ch). Results confirmed that the occurrence of RD and MD was greater than would be predicted for independent disorders. Additionally, children with MD, whether or not combined with RD, had poor performance on all attention measures when compared with typically developing children. Children with RD only, were no poorer on measures of attention than typical children. The results are discussed with respect to approaches proposed to account for the co-occurrence of disorders.
Resumo:
Objective: To explore whether patients relearning to walk after acquired brain injury and showing cognitive-motor interference were aware of divided attention difficulty; whether their perceptions concurred with those of treating staff. Design: Patients and neurophysiotherapists (from rehabilitation and disabled wards) completed questionnaires. Factor analyses were applied to responses. Correlations between responses, clinical measures and experimental decrements were examined. Results: Patient/staff responses showed some agreement; staff reported higher levels of perceived difficulty; responses conformed to two factors. One factor (staff/patients alike) reflected expectations about functional/motor status and did not correlate with decrements. The other factor (patients) correlated significantly with dual-task motor decrement, suggesting some genuine awareness of difficulty (cognitive performance prioritized over motor control). The other factor (staff) correlated significantly with cognitive decrement (gait prioritized over sustained attention). Conclusions: Despite some inaccurate estimation of susceptibility; patients and staff do exhibit awareness of divided attention difficulty, but with a limited degree of concurrence. In fact, our results suggest that patients and staff may be sensitive to different aspects of the deficit. Rather than 'Who knows best?', it is a question of 'Who knows what?.
Resumo:
The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.
Resumo:
We argue that hyper-systemizing predisposes individuals to show talent, and review evidence that hyper-systemizing is part of the cognitive style of people with autism spectrum conditions (ASC). We then clarify the hyper-systemizing theory, contrasting it to the weak central coherence (WCC) and executive dysfunction (ED) theories. The ED theory has difficulty explaining the existence of talent in ASC. While both hyper-systemizing and WCC theories postulate excellent attention to detail, by itself excellent attention to detail will not produce talent. By contrast, the hyper-systemizing theory argues that the excellent attention to detail is directed towards detecting 'if p, then q' rules (or [input-operation-output] reasoning). Such law-based pattern recognition systems can produce talent in systemizable domains. Finally, we argue that the excellent attention to detail in ASC is itself a consequence of sensory hypersensitivity. We review an experiment from our laboratory demonstrating sensory hypersensitivity detection thresholds in vision. We conclude that the origins of the association between autism and talent begin at the sensory level, include excellent attention to detail and end with hyper-systemizing.
Resumo:
Listeners can attend to one of several simultaneous messages by tracking one speaker’s voice characteristics. Using differences in the location of sounds in a room, we ask how well cues arising from spatial position compete with these characteristics. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played simultaneously with a different “distracter” context. Talker difference was in competition with position difference, so the response indicates which cue‐type the listener was tracking. Spatial position was found to override talker difference in dichotic conditions when the talkers are similar (male). The salience of cues associated with differences in sounds, bearings decreased with distance between listener and sources. These cues are more effective binaurally. However, there appear to be other cues that increase in salience with distance between sounds. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. Distances between spectra calculated using a gammatone filterbank (with ERB‐spaced CFs) of the room’s impulse responses at different locations were computed, and comparison with listeners’ responses suggested some slight monaural loudness cues, but also monaural “timbre” cues arising from the temporal‐ and spectral‐envelope differences in the speech from different locations.
Resumo:
Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine158methionine (Val158Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3′ variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.
Resumo:
We investigated whether attention shifts and eye movement preparation are mediated by shared control mechanisms, as claimed by the premotor theory of attention. ERPs were recorded in three tasks where directional cues presented at the beginning of each trial instructed participants to direct their attention to the cued side without eye movements (Covert task), to prepare an eye movement in the cued direction without attention shifts (Saccade task) or both (Combined task). A peripheral visual Go/Nogo stimulus that was presented 800 ms after cue onset signalled whether responses had to be executed or withheld. Lateralised ERP components triggered during the cue–target interval, which are assumed to reflect preparatory control mechanisms that mediate attentional orienting, were very similar across tasks. They were also present in the Saccade task, which was designed to discourage any concomitant covert attention shifts. These results support the hypothesis that saccade preparation and attentional orienting are implemented by common control structures. There were however systematic differences in the impact of eye movement programming and covert attention on ERPs triggered in response to visual stimuli at cued versus uncued locations. It is concluded that, although the preparatory processes underlying saccade programming and covert attentional orienting may be based on common mechanisms, they nevertheless differ in their spatially specific effects on visual information processing.