38 resultados para Asymptotic Mean Squared Errors
Resumo:
This paper analyzes the convergence behavior of the least mean square (LMS) filter when used in an adaptive code division multiple access (CDMA) detector consisting of a tapped delay line with adjustable tap weights. The sampling rate may be equal to or higher than the chip rate, and these correspond to chip-spaced (CS) and fractionally spaced (FS) detection, respectively. It is shown that CS and FS detectors with the same time-span exhibit identical convergence behavior if the baseband received signal is strictly bandlimited to half the chip rate. Even in the practical case when this condition is not met, deviations from this observation are imperceptible unless the initial tap-weight vector gives an extremely large mean squared error (MSE). This phenomenon is carefully explained with reference to the eigenvalues of the correlation matrix when the input signal is not perfectly bandlimited. The inadequacy of the eigenvalue spread of the tap-input correlation matrix as an indicator of the transient behavior and the influence of the initial tap weight vector on convergence speed are highlighted. Specifically, a initialization within the signal subspace or to the origin leads to very much faster convergence compared with initialization in the a noise subspace.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.
Resumo:
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
The cold equatorial SST bias in the tropical Pacific that is persistent in many coupled OAGCMs severely impacts the fidelity of the simulated climate and variability in this key region, such as the ENSO phenomenon. The classical bias analysis in these models usually concentrates on multi-decadal to centennial time series needed to obtain statistically robust features. Yet, this strategy cannot fully explain how the models errors were generated in the first place. Here, we use seasonal re-forecasts (hindcasts) to track back the origin of this cold bias. As such hindcasts are initialized close to observations, the transient drift leading to the cold bias can be analyzed to distinguish pre-existing errors from errors responding to initial ones. A time sequence of processes involved in the advent of the final mean state errors can then be proposed. We apply this strategy to the ENSEMBLES-FP6 project multi-model hindcasts of the last decades. Four of the five AOGCMs develop a persistent equatorial cold tongue bias within a few months. The associated systematic errors are first assessed separately for the warm and cold ENSO phases. We find that the models are able to reproduce either El Niño or La Niña close to observations, but not both. ENSO composites then show that the spurious equatorial cooling is maximum for El Niño years for the February and August start dates. For these events and at this time of the year, zonal wind errors in the equatorial Pacific are present from the beginning of the simulation and are hypothesized to be at the origin of the equatorial cold bias, generating too strong upwelling conditions. The systematic underestimation of the mixed layer depth in several models can also amplify the growth of the SST bias. The seminal role of these zonal wind errors is further demonstrated by carrying out ocean-only experiments forced by the AOCGCMs daily 10-meter wind. In a case study, we show that for several models, this forcing is sufficient to reproduce the main SST error patterns seen after 1 month in the AOCGCM hindcasts.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment MJO-like activity through high-frequency SST anomalies. In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
High resolution surface wind fields covering the global ocean, estimated from remotely sensed wind data and ECMWF wind analyses, have been available since 2005 with a spatial resolution of 0.25 degrees in longitude and latitude, and a temporal resolution of 6h. Their quality is investigated through various comparisons with surface wind vectors from 190 buoys moored in various oceanic basins, from research vessels and from QuikSCAT scatterometer data taken during 2005-2006. The NCEP/NCAR and NCDC blended wind products are also considered. The comparisons performed during January-December 2005 show that speeds and directions compare well to in-situ observations, including from moored buoys and ships, as well as to the remotely sensed data. The root-mean-squared differences of the wind speed and direction for the new blended wind data are lower than 2m/s and 30 degrees, respectively. These values are similar to those estimated in the comparisons of hourly buoy measurements and QuickSCAT near real time retrievals. At global scale, it is found that the new products compare well with the wind speed and wind vector components observed by QuikSCAT. No significant dependencies on the QuikSCAT wind speed or on the oceanic region considered are evident.Evaluation of high-resolution surface wind products at global and regional scales
Resumo:
Time series of global and regional mean Surface Air Temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, Root Mean Square Errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Non-interpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979-2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.
Resumo:
Windstorms are a main feature of the European climate and exert strong socioeconomic impacts. Large effort has been made in developing and enhancing models to simulate the intensification of windstorms, resulting footprints, and associated impacts. Simulated wind or gust speeds usually differ from observations, as regional climate models have biases and cannot capture all local effects. An approach to adjust regional climate model (RCM) simulations of wind and wind gust toward observations is introduced. For this purpose, 100 windstorms are selected and observations of 173 (111) test sites of the German Weather Service are considered for wind (gust) speed. Theoretical Weibull distributions are fitted to observed and simulated wind and gust speeds, and the distribution parameters of the observations are interpolated onto the RCM computational grid. A probability mapping approach is applied to relate the distributions and to correct the modeled footprints. The results are not only achieved for single test sites but for an area-wide regular grid. The approach is validated using root-mean-square errors on event and site basis, documenting that the method is generally able to adjust the RCM output toward observations. For gust speeds, an improvement on 88 of 100 events and at about 64% of the test sites is reached. For wind, 99 of 100 improved events and ~84% improved sites can be obtained. This gives confidence on the potential of the introduced approach for many applications, in particular those considering wind data.
Resumo:
This paper investigates the use of a particle filter for data assimilation with a full scale coupled ocean–atmosphere general circulation model. Synthetic twin experiments are performed to assess the performance of the equivalent weights filter in such a high-dimensional system. Artificial 2-dimensional sea surface temperature fields are used as observational data every day. Results are presented for different values of the free parameters in the method. Measures of the performance of the filter are root mean square errors, trajectories of individual variables in the model and rank histograms. Filter degeneracy is not observed and the performance of the filter is shown to depend on the ability to keep maximum spread in the ensemble.
Resumo:
We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.