106 resultados para Armillaria root rot.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The respiratory emission of CO2 from roots is frequently proposed as an attractant that allows soil-dwelling insects to locate host plant roots, but this role has recently become less certain. CO2 is emitted from many sources other than roots, so does not necessarily indicate the presence of host plants, and because of the high density of roots in the upper soil layers, spatial gradients may not always be perceptible by soil-dwelling insects. The role of CO2 in host location was investigated using the clover root weevil Sitona lepidus Gyllenhall and its host plant white clover (Trifolium repens L.) as a model system. Rhizochamber experiments showed that CO2 concentrations were approximately 1000 ppm around the roots of white clover, but significantly decreased with increasing distance from roots. In behavioural experiments, no evidence was found for any attraction by S. lepidus larvae to point emissions of CO2, regardless of emission rates. Fewer than 15% of larvae were attracted to point emissions of CO2, compared with a control response of 17%. However, fractal analysis of movement paths in constant CO2 concentrations demonstrated that searching by S. lepidus larvae significantly intensified when they experienced CO2 concentrations similar to those found around the roots of white clover (i.e. 1000 ppm). It is suggested that respiratory emissions of CO2 may act as a 'search trigger' for S. lepidus, whereby it induces larvae to search a smaller area more intensively, in order to detect location cues that are more specific to their host plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive plant species have been shown to alter the microbial community composition of the soils they invade and it is suggested that this below-ground perturbation of potential pathogens, decomposers or symbionts may feedback positively to allow invasive success. Whether these perturbations are mediated through specific components of root exudation are not understood. We focussed on 8-hydroxyquinoline, a putative allelochemical of Centaurea diffusa (diffuse knapweed) and used an artificial root system to differentiate the effects of 8-hydroxyquinoline against a background of total rhizodeposition as mimicked through supply of a synthetic exudate solution. In soil proximal (0-10 cm) to the artificial root, synthetic exudates had a highly significant (P < 0.001) influence on dehydrogenase, fluorescein diacetate hydrolysis and urease activity. in addition, 8-hydroxyquinoline was significant (p = 0.003) as a main effect on dehydrogenase activity and interacted with synthetic exudates to affect urease activity (p = 0.09). Hierarchical cluster analysis of 16S rDNA-based DGGE band patterns also identified a primary affect of synthetic exudates and a secondary affect of 8-hydroxyquinoline on bacterial community structure. Thus, we show that the artificial rhizosphere produced by the synthetic exudates was the predominant effect, but, that the influence of the 8-hydroxyquinoline signal on the activity and structure of soil microbial communities could also be detected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a formulated product containing spores of the naturally occurring fungus Paecilomyces lilacinus, strain 251, was evaluated against root-knot nematodes in pot and greenhouse experiments. Decrease of second-stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 4 kg ha(-1), while a further decrease was recorded by doubling the dose. However, the mortality rate decreased by increasing the inoculum level. Application of P. lilacinus and Bacillus firmus, singly or together in pot experiments, provided effective control of second-stage juveniles, eggs or egg masses of root-knot nematodes. In a greenhouse experiment, the bio-nematicide was evaluated for its potential to control root-knot nematodes either as a stand-alone method or in combination with soil solarization. Soil was solarized for 15 d and the bio-nematicide was applied just after the removal of the plastic sheet. Soil solarization for 15 d either alone or combined with the use of P. lilacinus did not provide satisfactory control of root-knot nematodes. The use of oxamyl, which was applied 2 weeks before and during transplanting, gave results similar to the commercial product containing P. lilacinus but superior to soil solarization. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a formulated bio-nematicide product containing lyophilized bacteria spores of Bacillus firmus was evaluated against root-knot nematodes (RKN) in greenhouse and field experiments. A decrease of second stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 0.9 g kg(-1) of soil while further a decrease was recorded by doubling the dose. However, the mortality rate decreased as the inoculurn level increased. Exposure of either second stage juveniles or egg masses to temperatures of 35-40 degrees C for 1-4 weeks had a marked effect on their survival. In a field experiment, the bio-nematicide was evaluated for its potential to control RKN either as a stand-alone method or in combination with soil solarization. The latter was tested for 15-30 days and the bionematicide was applied just before soil coverage with the plastic sheet or just after its removal. Soil solarization either for 15-30 days provided satisfactory control of RKN. The combination of soil solarization with the bio-nematicide improved nematode control and gave results similar to the chemical treatment. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic and environmental factors interact to determine the growth and activity of crop root systems. This paper examines the effects of agronomic management and genotype on wheat root systems in the UK and Australia, and suggests ways in which root limitations to crop performance might be alleviated. In a field study in the UK which examined late-season growth and activity, fungicide maintained the size of the root system during early grain-filling, and there were significant differences between cultivars in root distribution with depth below 0.3 m. Shamrock had a longer root system below 0.3 m than varieties such as Hereward and Consort. Fungicide significantly increased root growth at 0.1-0.2 m in one season. In Australia, a wheat line selected for high shoot vigour had associated root vigour during early seedling growth but the effect on root growth did not persist. The results provide examples of genotypic differences in wheat root growth under field conditions which interact with agronomic management in ways which can be exploited to benefit growth and yield in diverse environments.