72 resultados para Archaeological Anthropology
Resumo:
Samples taken from middens at the Neolithic site of Catalhoyuk in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hack-berries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A range of archaeological samples have been examined using FT-IR spectroscopy. These include suspected coprolite samples from the Neolithic site of Catalhoyuk in Turkey, pottery samples from the Roman site of Silchester, UK and the Bronze Age site of Gatas, Spain and unidentified black residues on pottery sherds from the Roman sites of Springhead and Cambourne, UK. For coprolite samples the aim of FT-IR analysis is identification. Identification of coprolites in the field is based on their distinct orange colour; however, such visual identifications can often be misleading due to their similarity with deposits such as ochre and clay. For pottery the aim is to screen those samples that might contain high levels of organic residues which would be suitable for GC-MS analysis. The experiments have shown coprolites to have distinctive spectra, containing strong peaks from calcite, phosphate and quartz; the presence of phosphorus may be confirmed by SEM-EDX analysis. Pottery containing organic residues of plant and animal origin has also been shown to generally display strong phosphate peaks. FT-IR has distinguished between organic resin and non-organic compositions for the black residues, with differences also being seen between organic samples that have the same physical appearance. Further analysis by CC-MS has confirmed the identification of the coprolites through the presence of coprostanol and bile acids, and shows that the majority of organic pottery residues are either fatty acids or mono- or di-acylglycerols from foodstuffs, or triterpenoid resin compounds exposed to high temperatures. One suspected resin sample was shown to contain no organic residues. and it is seen that resin samples with similar physical appearances have different chemical compositions. FT-IR is proposed as a quick and cheap method of screening archaeological samples before subjecting them to the more expensive and time-consuming method of GC-MS. This will eliminate inorganic samples such as clays and ochre from CC-MS analysis, and will screen those samples which are most likely to have a high concentration of preserved organic residues. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The concept of “working” memory is traceable back to nineteenth century theorists (Baldwin, 1894; James 1890) but the term itself was not used until the mid-twentieth century (Miller, Galanter & Pribram, 1960). A variety of different explanatory constructs have since evolved which all make use of the working memory label (Miyake & Shah, 1999). This history is briefly reviewed and alternative formulations of working memory (as language-processor, executive attention, and global workspace) are considered as potential mechanisms for cognitive change within and between individuals and between species. A means, derived from the literature on human problem-solving (Newell & Simon, 1972), of tracing memory and computational demands across a single task is described and applied to two specific examples of tool-use by chimpanzees and early hominids. The examples show how specific proposals for necessary and/or sufficient computational and memory requirements can be more rigorously assessed on a task by task basis. General difficulties in connecting cognitive theories (arising from the observed capabilities of individuals deprived of material support) with archaeological data (primarily remnants of material culture) are discussed.
Resumo:
Samples taken from middens at the Neolithic site of Catalhoyuk in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hack-berries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article provides a brief critique of a recent article on biomineralisation and preservation. It gives a summary of the difference between biomineralisation and mineral replacement, and addresses problems with the interpretation of FT-IR data. The lack of contextual information for the samples studied is another problem which is highlighted.
Resumo:
This study assesses the current state of adult skeletal age-at-death estimation in biological anthropology through analysis of data published in recent research articles from three major anthropological and archaeological journals (2004–2009). The most commonly used adult ageing methods, age of ‘adulthood’, age ranges and the maximum age reported for ‘mature’ adults were compared. The results showed a wide range of variability in the age at which individuals were determined to be adult (from 14 to 25 years), uneven age ranges, a lack of standardisation in the use of descriptive age categories and the inappropriate application of some ageing methods for the sample being examined. Such discrepancies make comparisons between skeletal samples difficult, while the inappropriate use of some techniques make the resultant age estimations unreliable. At a time when national and even global comparisons of past health are becoming prominent, standardisation in the terminology and age categories used to define adults within each sample is fundamental. It is hoped that this research will prompt discussions in the osteological community (both nationally and internationally) about what defines an ‘adult’, how to standardise the age ranges that we use and how individuals should be assigned to each age category. Skeletal markers have been proposed to help physically identify ‘adult’ individuals.