25 resultados para Antigens, CD45
Resumo:
Survival of enteric pathogens exposed to various environmental stresses depends upon a number of protective responses, some of which are associated with induction of virulence determinants. Flagella and fimbriae are putative virulence determinants of Salmonella spp, and ELISAs specific for the detection of flagella and SEF21, SEF14 and SEF17 fimbriae were used to assess the effect of temperature and pH upon their elaboration by isolates of Salmonella serotype Enteritidis in planktonic growth and on the surface of two-dimensional gradient agar plates, For three phage type 4 isolates of Enteritidis of comparative clinical provenance, similar phenotypes for the elaboration of these surface antigens were observed. SEF14 fimbriae were elaborated in planktonic growth at 37 degrees C, but not 20 degrees C, at pH 4.77 and above but not at pH 4.04; whereas on agar gradient plates SEF14 fimbriae were elaborated poorly but with best yields at pH 4.04, SEF17 fimbriae were elaborated in planktonic growth at 20 degrees C, but not at 37 degrees C, at pH 6.18 and above but not at pH 5.09 or below; whereas on agar gradient plates SEF17 fimbriae were elaborated well even at pH 4.65, SEF21 fimbriae were expressed very poorly under all conditions tested, Planktonic growth at 37 degrees C induced least flagella whereas growth at 20 degrees C, and particularly surface growth at lower pH values, induced a 'hyper-flagellate' phenotype, Single colonies allowed to form on gradient agar plates were shown to generate different colonial morphologies which were dependent on initial pH. These results demonstrate that the physicochemical environment is an important determinant of bacterial response, especially the induction of putative virulence factors.
Resumo:
To gain an understanding of the role of fimbriae and flagella in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces, the extent of adherence of viable wild-type strains to a polystyrene microtitration plate was determined by a crystal violet staining assay, Elaboration of surface antigens by adherent bacteria was assayed by fimbriae- and flagella-specific ELISAs, Wild-type Enteritidis strains adhered well at 37 degrees C and 25 degrees C when grown in microtitration wells in Colonisation Factor Antigen broth, but not in other media tested, At 37 degrees C, adherent bacteria elaborated copious quantities of SEF14 fimbrial antigen, whereas at 25 degrees C adherent bacteria elaborated copious quantities of SEF17 fimbrial antigen. Non-fimbriate and non-flagellate knock-out mutant strains were also assessed in the adherence assay. Mutant strains unable to elaborate SEF14 and SEF17 fimbriae adhered poorly at 37 degrees C and 25 degrees C, respectively, but adherence was not abolished. Non-motile mutant strains showed reduced adherence whilst type-1, PEF and LPF fimbriae appeared not to contribute to adherence in this assay. These data indicate that SEF17 and SEF14 fimbriae mediate bacterial cell aggregation on inanimate surfaces under appropriate growth conditions.
Resumo:
Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.
Resumo:
Serological typing of Escherichia coli O antigens is a well-established method used for differentiation and identification of O serotypes commonly associated with disease. In this feasibility study, we have developed a novel somatic antibody-based miniaturized microarray chip, using 17 antisera, which can be used to detect bound whole-cell E. coli antigen with its corresponding immobilized antibody, to assess the feasibility of this approach. The chip was tested using the related 17 control strains, and the O types found by the microarray chip showed 100% correlation with the O types found by conventional typing. A blind trial was performed in which 100 E. coli isolates that had been O serotyped previously by the conventional assay were tested by the array approach. Overall, the O serotypes of 88% of isolates were correctly identified by the microarray method. For several isolates, ambiguity of O-type designation by microarray arose due to increased sensitivity of this method, allowing signal intensities of cross-reactions to be quantified. Investigation of discrepancies between conventional and microarray O serotyping indicated that some isolates upon storage had become untypeable and, therefore, gave poor signal intensity when tested by the microarray or retested by conventional means. For all 20 serotype O26 and O157 isolates, the apparent discrepancy in O serotyping was analyzed further by a third independent test, which confirmed the microarray results. Therefore, the use of miniaturized protein arrays increases the speed and efficiency of O serotyping in a cost-effective manner, and these preliminary findings suggest the microarray approach may have a higher accuracy than those of traditional O-serotyping methods.
Resumo:
Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in a reduction in IgA (P,0·0005) and IgM (P,0·009) production by mucosal tissues but had no effect on IgG production (P.0·05). Probiotic- supplemented pigs had more mast cells than unsupplemented littermates (P,0·0001), although numbers in both groups were low. In addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P,0·05). The present findings are consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes of nutritional intervention.
Resumo:
Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.
Resumo:
A candidate live vaccine for avian pathogenic Escherichia coli (APEC) was constructed from a virulent field APEC O78 strain by mutation of the aroA gene. The mutant was highly similar to the parent wild-type strain in respect of colony morphology, motility, growth in suspension, hemagglutination, Congo Red binding, HEp-2 cell adhesion, and the elaboration of surface antigens type 1 fimbriae and flagella, although production of curli fimbriae was reduced marginally. The mutant proved avirulent when inoculated into 1-day-old chicks by spray application and when presented again in the drinking water at 7 days of age. Chickens and turkeys vaccinated with an O78 aroA mutant were protected against a challenge at 6 wk of age by virulent APEC strains.
Resumo:
Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.
Resumo:
Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.
Resumo:
In vivo, enzymatic reduction of some protein disulfide bonds, allosteric disulfide bonds, provides an important level of structural and functional regulation. The free cysteine residues generated can be labeled by maleimide reagents, including biotin derivatives, allowing the reduced protein to be detected or purified. During the screening of monoclonal antibodies for those specific for the reduced forms of proteins, we isolated OX133, a unique antibody that recognizes polypeptide resident, N-ethylmaleimide (NEM)-modified cysteine residues in a sequence-independent manner. OX133 offers an alternative to biotin-maleimide reagents for labeling reduced/alkylated antigens and capturing reduced/alkylated proteins with the advantage that NEM-modified proteins are more easily detected in mass spectrometry, and may be more easily recovered than is the case following capture with biotin based reagents.