19 resultados para Antarctic Ocean
Resumo:
About 90% of the anthropogenic increase in heat stored in the climate system is found the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere-ocean general circulation model (AOGCM) with an eddy-permitting ocean component of 1/3 degree resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
Resumo:
Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0–700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0–300m layer, but with quite large diversity among different ORAs. Beneath the 300m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.
Resumo:
Observed and predicted changes in the strength of the westerly winds blowing over the Southern Ocean have motivated a number of studies of the response of the Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation (MOC) to wind perturbations and led to the discovery of the``eddy-compensation" regime, wherein the MOC becomes insensitive to wind changes. In addition to the MOC, tracer transport also depends on mixing processes. Here we show, in a high-resolution process model, that isopycnal mixing by mesoscale eddies is strongly dependent on the wind strength. This dependence can be explained by mixing-length theory and is driven by increases in eddy kinetic energy; the mixing length does not change strongly in our simulation. Simulation of a passive ventilation tracer (analogous to CFCs or anthropogenic CO$_2$) demonstrates that variations in tracer uptake across experiments are dominated by changes in isopycnal mixing, rather than changes in the MOC. We argue that, to properly understand tracer uptake under different wind-forcing scenarios, the sensitivity of isopycnal mixing to winds must be accounted for.
Resumo:
The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ; 4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60 8 S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.