20 resultados para Analog electronic systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: A new methodology was created to measure the energy consumption and related green house gas (GHG) emissions of a computer operating system (OS) across different device platforms. The methodology involved the direct power measurement of devices under different activity states. In order to include all aspects of an OS, the methodology included measurements in various OS modes, whilst uniquely, also incorporating measurements when running an array of defined software activities, so as to include OS application management features. The methodology was demonstrated on a laptop and phone that could each run multiple OSs, results confirmed that OS can significantly impact the energy consumption of devices. In particular, the new versions of the Microsoft Windows OS were tested and highlighted significant differences between the OS versions on the same hardware. The developed methodology could enable a greater awareness of energy consumption, during both the software development and software marketing processes.