25 resultados para Alpha-cluster model
Resumo:
Aims: To examine Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 for known pathogenic mechanisms. Methods and Results: Using specific DNA probes, the strains were shown not to carry the genes encoding invasion, various adhesion phenotypes or expression of a range of enterotoxins. The strains were unable to express long-chain lipopolysaccharide and were susceptible to the effects of serum complement. Using a BALB/c mouse model, the strains were shown to be unable to survive in selected tissues or to persist in the mouse gut. Using a chick model, strains EQ1, BLR and BL21 invaded livers but not spleens; only strain EQ1 persisted in the chick gut. In Merino sheep, only strain EQ1 was detected 6 d postinfection. Conclusions: Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 did not carry the well-recognized pathogenic mechanisms required by strains of E. coli causing the majority of enteric infections. Significance and Impact of the Study: Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 were considered to be non-pathogenic and unlikely to survive in host tissues and cause disease.
Resumo:
High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.
Resumo:
Despite many decades investigating scalp recordable 8–13-Hz (alpha) electroencephalographic activity, no consensus has yet emerged regarding its physiological origins nor its functional role in cognition. Here we outline a detailed, physiologically meaningful, theory for the genesis of this rhythm that may provide important clues to its functional role. In particular we find that electroencephalographically plausible model dynamics, obtained with physiological admissible parameterisations, reveals a cortex perched on the brink of stability, which when perturbed gives rise to a range of unanticipated complex dynamics that include 40-Hz (gamma) activity. Preliminary experimental evidence, involving the detection of weak nonlinearity in resting EEG using an extension of the well-known surrogate data method, suggests that nonlinear (deterministic) dynamics are more likely to be associated with weakly damped alpha activity. Thus rather than the “alpha rhythm” being an idling rhythm it may be more profitable to conceive it as a readiness rhythm.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.
Resumo:
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
Resumo:
The mammalian lignan, enterolactone, has been shown to reduce the proliferation of the earlier stages of prostate cancer at physiological concentrations in vitro. However, efficacy in the later stages of the disease occurs at concentrations difficult to achieve through dietary modification. We have therefore investigated what concentration(s) of enterolactone can restrict proliferation in multiple stages of prostate cancer using an in vitro model system of prostate disease. We determined that enterolactone at 20 μM significantly restricted the proliferation of mid and late stage models of prostate disease. These effects were strongly associated with changes in the expression of the DNA licencing genes (GMNN, CDT1, MCM2 and 7), in reduced expression of the miR-106b cluster (miR-106b, miR-93, and miR-25), and in increased expression of the PTEN tumour suppressor gene. We have shown anti-proliferative effects of enterolactone in earlier stages of prostate disease than previously reported and that these effects are mediated, in part, by microRNA-mediated regulation.
Resumo:
The launch of the Double Star mission has provided the opportunity to monitor events at distinct locations on the dayside magnetopause, in coordination with the quartet of Cluster spacecraft. We present results of two such coordinated studies. In the first, 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawn-side magnetosphere. Cluster observed northward moving FTEs with +/- polarity, whereas TC-1 saw -/+ polarity FTEs. The strength, motion and occurrence of the FTE signatures changes somewhat according to changes in IMF clock angle. These observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1. The observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, lying north and south of the reconnection line, respectively. This scenario is supported by the application of a model, designed to track flux tube motion, to conditions appropriate for the prevailing interplanetary conditions. The results from the model confirm the observational evidence that the low-latitude FTE dynamics is sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model predicts that TC-1 should miss the resulting FTEs more often than Cluster, as is observed. For the second conjunction, on the 4 Jan 2005, the Cluster and TC-1 spacecraft all exited the dusk-side magnetosphere almost simultaneously, with TC-1 lying almost equatorial and Cluster at northern latitudes at about 4 RE from TC-1. The spacecraft traverse the magnetopause during a strong reversal in the IMF from northward to southward and a number of magnetosheath FTE signatures are subsequently observed. One coordinated FTE, studied in detail by Pu et al, [this issue], carries and inflowing energetic electron population and shows a motion and orientation which is similar at all spacecraft and consistent with the predictions of the model for the flux tube dynamics, given a near sub-solar reconnection line. This event can be interpreted either as the passage of two parallel flux tubes arising from adjacent x-line positions, or as a crossing of a single flux tube at different positions.
Resumo:
The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.
Resumo:
During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.