47 resultados para Algebraic Integers
Resumo:
Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.
Resumo:
Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing. In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
The recursive circulant RC(2(n), 4) enjoys several attractive topological properties. Let max_epsilon(G) (m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. In this paper, we show that max_epsilon(RC(2n,4))(m) = Sigma(i)(r)=(0)(p(i)/2 + i)2(Pi), where p(0) > p(1) > ... > p(r) are nonnegative integers defined by m = Sigma(i)(r)=(0)2(Pi). We then apply this formula to find the bisection width of RC(2(n), 4). The conclusion shows that, as n-dimensional cube, RC(2(n), 4) enjoys a linear bisection width. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.
Resumo:
This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic.
Resumo:
This paper describes a method for dynamic data reconciliation of nonlinear systems that are simulated using the sequential modular approach, and where individual modules are represented by a class of differential algebraic equations. The estimation technique consists of a bank of extended Kalman filters that are integrated with the modules. The paper reports a study based on experimental data obtained from a pilot scale mixing process.
Resumo:
In this paper we study generalised prime systems for which the integer counting function NP(x) is asymptotically well behaved, in the sense that NP(x)=ρx+O(xβ), where ρ is a positive constant and . For such systems, the associated zeta function ζP(s) is holomorphic for . We prove that for , for any ε>0, and also for ε=0 for all such σ except possibly one value. The Dirichlet divisor problem for generalised integers concerns the size of the error term in NkP(x)−Ress=1(ζPk(s)xs/s), which is O(xθ) for some θ<1. Letting αk denote the infimum of such θ, we show that .
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.