47 resultados para Air science education
Resumo:
Some of the most pressing problems currently facing chemical education throughout the world are rehearsed. It is suggested that if the notion of "context" is to be used as the basis for an address to these problems, it must enable a number of challenges to be met. Four generic models of "context" are identified that are currently used or that may be used in some form within chemical education as the basis for curriculum design. It is suggested that a model based on physical settings, together with their cultural justifications, and taught with a socio-cultural perspective on learning, is likely to meet those challenges most fully. A number of reasons why the relative efficacies of these four models of approaches cannot be evaluated from the existing research literature are suggested. Finally, an established model for the representation of the development of curricula is used to discuss the development and evaluation of context-based chemical curricula.
Resumo:
Scientists hold a wide range of beliefs on matters of religion, although popular media coverage in the UK commonly suggests that atheism is a core commitment for scientists. Considering the relationship between religion and science is a recommended topic in the English National Curriculum for lower secondary pupils (11-14 year-olds), and it is expected that different perspectives will be considered. However it is well established that many pupils may have difficulty accessing sophisticated ideas about the nature of science, and previous research suggests some may identify science with scientism. To explore pupil impressions of the relationship between science and religion, 13-14 year old pupils were surveyed in one class from each of four English secondary schools, by asking them to rate a set of statements about the relationship between science and religion, and scientific and religious perspectives on the origins of the world, and of life on earth, on the value of prayer and on the status of miracles. The survey revealed diverse views on these issues, reflecting the wider society. However it was found that a considerable proportion of the pupils in the sample considered religious beliefs and scientific perspectives to be opposed. The basis and potential consequences of such views are considered, and the need for more attention to this area of student thinking is highlighted.
Resumo:
A number of previous studies have shown that there is a widespread view among young people that science and religion are opposed. In this paper, we suggest that it requires a significant level of what can be termed ‘epistemic insight’ to access the idea that some people see science and religion as compatible while others do not. To explore this further, we draw on previous work to devise a methodology to discover students’ thinking about apparent contradictions between scientific and religious explanations of the origins of the universe. In our discussion of the findings, we highlight that students’ epistemic insight in this context does seem in many cases to be limited and we outline some of the issues emerging from the study that seem to boost or limit students’ progress in this area.
Resumo:
A semi-structured interview was used in Brazil to enquire into the 'notion of model' held by a total sample of 39 science teachers who were: employed in 'fundamental' (6-14 years) and 'medium' (15-17 years) schools; student science teachers currently doing their practicum; and university science teachers. Seven 'aspects' of their notions of a model were identified: the nature of a model, the use to which it can be put, the entities of which it consists, its relative uniqueness, the time span over which it is used, its status in the making of predictions, and the basis for the accreditation of its existence and use. Categories of meaning were identified for each of these aspects. The profiles of teachers' notions of 'model' in terms of the aspects and categories were complex, providing no support for the notion of 'Levels' in understanding. Teachers with degrees in chemistry or physics had different views about the notion of 'model' to those with degrees in biology or with teacher training certificates.
Resumo:
This study was an attempt to identify the epistemological roots of knowledge when students carry out hands-on experiments in physics. We found that, within the context of designing a solution to a stated problem, subjects constructed and ran thought experiments intertwined within the processes of conducting physical experiments. We show that the process of alternating between these two modes- empirically experimenting and experimenting in thought- leads towards a convergence on scientifically acceptable concepts. We call this process mutual projection. In the process of mutual projection, external representations were generated. Objects in the physical environment were represented in an imaginary world and these representations were associated with processes in the physical world. It is through this coupling that constituents of both the imaginary world and the physical world gain meaning. We further show that the external representations are rooted in sensory interaction and constitute a semi-symbolic pictorial communication system, a sort of primitive 'language', which is developed as the practical work continues. The constituents of this pictorial communication system are used in the thought experiments taking place in association with the empirical experimentation. The results of this study provide a model of physics learning during hands-on experimentation.
Resumo:
As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was ‘How do we predict weather and climate?’ Making use of the students’ familiarity with weather and climate, several concepts of relevance to secondary science were investigated. The open days also provided an opportunity for more than 30 research staff from the university to interact with the students. Feedback from students and teachers was extremely positive. This article shows how meteorological science can be used to illustrate elements of the secondary science and mathematics curricula.