39 resultados para Air pollution control industry.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four perfluorocarbon tracer dispersion experiments were carried out in central London, United Kingdom in 2004. These experiments were supplementary to the dispersion of air pollution and penetration into the local environment (DAPPLE) campaign and consisted of ground level releases, roof level releases and mobile releases; the latter are believed to be the first such experiments to be undertaken. A detailed description of the experiments including release, sampling, analysis and wind observations is given. The characteristics of dispersion from the fixed and mobile sources are discussed and contrasted, in particular, the decay in concentration levels away from the source location and the additional variability that results from the non-uniformity of vehicle speed. Copyright © 2009 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 degrees N and 80.6 degrees N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1930s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high A OD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or anticyclonic conditions result in high atmospheric turbidity. The frequency of this weather type has declined significantly since the early 1980s in the Kara-Laptev sector, which partly explains the decline in summer AOD values. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental wind tunnel and smoke visualisation testing and CFD modelling were conducted to investigate the effect of air flow control mechanism and heat source inside rooms on wind catchers/towers performance. For this purpose, a full-scale wind catcher was connected to a test room and positioned centrally in an open boundary wind tunnel. Pressure coefficients (C-p's) around the wind catcher and air flow into the test room were established. The performance of the wind catcher depends greatly on the wind speed and direction. The incorporation of dampers and egg crate grille at ceiling level reduces and regulates the air flow rate with an average pressure loss coefficient of 0.01. The operation of the wind catcher in the presence of heat sources will potentially lower the internal temperatures in line with the external temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scientific applications are usually developed, tested and used by a group of geographically dispersed scientists. The problems associated with the remote development and data sharing could be tackled by using collaborative working environments. There are various tools and software to create collaborative working environments. Some software frameworks, currently available, use these tools and software to enable remote job submission and file transfer on top of existing grid infrastructures. However, for many large scientific applications, further efforts need to be put to prepare a framework which offers application-centric facilities. Unified Air Pollution Model (UNI-DEM), developed by Danish Environmental Research Institute, is an example of a large scientific application which is in a continuous development and experimenting process by different institutes in Europe. This paper intends to design a collaborative distributed computing environment for UNI-DEM in particular but the framework proposed may also fit to many large scientific applications as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale air pollution models are powerful tools, designed to meet the increasing demand in different environmental studies. The atmosphere is the most dynamic component of the environment, where the pollutants can be moved quickly on far distnce. Therefore the air pollution modeling must be done in a large computational domain. Moreover, all relevant physical, chemical and photochemical processes must be taken into account. In such complex models operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The Danish Eulerian Model (DEM) is one of the most advanced such models. Its space domain (4800 × 4800 km) covers Europe, most of the Mediterian and neighboring parts of Asia and the Atlantic Ocean. Efficient parallelization is crucial for the performance and practical capabilities of this huge computational model. Different splitting schemes, based on the main processes mentioned above, have been implemented and tested with respect to accuracy and performance in the new version of DEM. Some numerical results of these experiments are presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions between atmospheric oxidants and organic amphiphiles at the air water interface of an aerosol droplet may affect the size and critical supersaturation required for cloud droplet formation. We demonstrate that no reaction occurs between gaseous nitrogen dioxide (1000 ppm in air) and a monolayer of an insoluble amphiphile, oleic acid (cis-9-octadecenoic acid), at the air water interface which removes material from the air water interface. We present evidence that the NO2 isomerises the cis-9-octadecenoic (oleic) acid to trans-9-octadecenoic (elaidic) acid. The study presented here is important for future and previous studies of (1) the reaction between the nitrate radical, NO3, and thin organic films as NO2 is usually present in high concentrations in these experimental systems and (2) the effect of NO2 air pollution on the unsaturated fatty acids and lipids found at the air liquid surface of human lung lining fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Not long after Franklin’s iconic studies, an atmospheric electric field was discovered in “fair weather” regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson’s model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Commission’s Biocidal Products Directive (Council Directive 98/8 EC), known as the BPD, is the largest regulatory exercise ever to affect the urban pest control industry. Although focussed in the European Union its impact is global because any company selling pest control products in the EU must follow its principles. All active substances, belonging to 23 different biocidal product types, come within the Directive’s scope of regulatory control. This will eventually involve re-registration of all existing products, as well as affecting any new product that comes to the market. Some active substances, such as the rodenticides and insecticides, are already highly regulated in Europe but others, such as embalming fluids, masonry preservatives, disinfectants and repellents/attractants will come under intensive regulatory scrutiny for the first time. One of the purposes of the Directive is to offer enhanced protection for human health and the environment. The potential benefit for suppliers of pest control products is mutual recognition of regulatory product dossiers across 25 Member States of the European Union. This process, requiring harmonisation of all regulatory decision-making processes, should reduce duplicated effort and, potentially, allow manufacturers speedier access to European markets. However, the cost to industry is enormous, both in terms of the regulatory resources required to assemble BPD dossiers and the development budgets required to conduct studies to meet its new standards. The cost to regulatory authorities is also tremendous, in terms of the need to upgrade staff capabilities to meet new challenges and the volume of the work expected by the Commission when they are appointed the Rapporteur Member State (RMS) for an active substance. Users of pest control products will pay a price too. The increased regulatory costs of maintaining products in the European market are likely to be passed on, at least in part, to users. Furthermore, where the costs of meeting new regulatory requirements cannot be recouped from product sales, many well-known products may leave the market. For example, it seems that in future few rodenticides that are not anticoagulants will be available within the EU. An understanding of the BPD is essential to those who intend to place urban pest control products on the European market and may be useful to those considering the harmonisation of regulatory processes elsewhere. This paper reviews the operation of the first stages of the BPD for rodenticides, examines the potential benefits and costs of the legislation to the urban pest control industry and looks forward to the next stages of implementation involving all insecticides used in urban pest management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous carbons are important in a wide variety of applications, ranging from pollution control to supercapacitors, yet their structure at the molecular level is poorly understood. Over the years, many structural models have been put forward, but none have been entirely satisfactory in explaining the properties of the carbons. The discovery of fullerenes and fullerene-related structures such as carbon nanotubes gave us a new perspective on the structure of solid carbon, and in 1997 it was suggested that microporous carbon may have a structure related to that of the fullerenes. Recently, evidence in support of such a structure has been obtained using aberration-corrected transmission electron microscopy, electron energy loss spectroscopy and other techniques. This article describes the development of ideas about the structure of microporous carbon, and reviews the experimental evidence for a fullerene-related structure. Theoretical models of the structural evolution of microporous carbon are summarised, and the use of fullerene-like models to predict the adsorptive properties of microporous carbons are reviewed.