18 resultados para Air Pollutants, Occupational Hazardous Substances
Resumo:
The aim of this study was to evaluate and improve the accuracy of plant uptake models for neutral hydrophobic organic pollutants (1 < logKOW < 9, −8 < logKAW < 0) used in regulatory exposure assessment tools, using uncertainty and sensitivity analyses. The models considered were RAIDAR, EUSES, CSOIL, CLEA, and CalTOX. In this research, CSOIL demonstrated the best performance of all five exposure assessment tools for root uptake from polluted soil in comparison with observed data, but no model predicted shoot uptake well. Recalibration of the transpiration and volatilisation parameters improved the performance of CSOIL and CLEA. The dominant pathway for shoot uptake simulated differed according to the properties of the chemical under consideration; those with a higher air–water partition coefficient were transported into shoots via the soil-air-plant pathway, while chemicals with a lower octanol–water partition coefficient and air–water partition coefficient were transported via the root. The soil organic carbon content was a particularly sensitive parameter in each model and using a site specific value improved model performance.
Resumo:
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Resumo:
There is a tendency to reduce ventilation rates and natural or hybrid ventilation systems to ensure the conservation of energy in school buildings. However, high indoor pollutant concentration, due to natural or hybrid ventilation systems may have a significant adverse impact on the health and academic performance of pupils and students. Reviewed evidence shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area, eventually indicating that CO2 concentrations can rise to very high levels (about 4000 ppm) in classrooms during occupancy periods. In South Africa’s naturally ventilated classrooms, it is not clear whether the environmental conditions are conducive for learning. In addition, natural ventilation will be minimized given the fact that in cold, wet or windy weather, doors and windows will commonly remain closed. Evidence from literature based studies indicates that the significance of ventilation techniques is not understood satisfactorily and additional information concerning naturally ventilated schools has to be provided for better design and policy formulation. To develop a thorough understanding of the environments in classrooms, many other parameters have to be considered as well, such as outdoor air quality, CO2 concentrations, temperature and relative humidity and safety issues that may be important drawbacks for naturally ventilated schools. The aim of this paper is to develop a conceptual understanding of methods that can be implemented to assess the effectiveness of naturally ventilated classrooms in Gauteng, South Africa. A theoretical concept with an embedded practical methodology have been proposed for the research programme to investigate the relationship between ventilation rates and learning in schools in Gauteng , a province in South Africa. It is important that existing and future school buildings must include adequate outdoor ventilation, control of moisture, and avoidance of indoor exposures to microbiologic and chemical substances considered likely to have adverse effects in South Africa. Adequate ventilation in classrooms is necessary to reduce and/or eradicate the transmission of indoor pollutants.