29 resultados para Ahmad ibn Tulun.
Resumo:
The popularity of wireless local area networks (WLANs) has resulted in their dense deployments around the world. While this increases capacity and coverage, the problem of increased interference can severely degrade the performance of WLANs. However, the impact of interference on throughput in dense WLANs with multiple access points (APs) has had very limited prior research. This is believed to be due to 1) the inaccurate assumption that throughput is always a monotonically decreasing function of interference and 2) the prohibitively high complexity of an accurate analytical model. In this work, firstly we provide a useful classification of commonly found interference scenarios. Secondly, we investigate the impact of interference on throughput for each class based on an approach that determines the possibility of parallel transmissions. Extensive packet-level simulations using OPNET have been performed to support the observations made. Interestingly, results have shown that in some topologies, increased interference can lead to higher throughput and vice versa.
Resumo:
Given that the next and current generation networks will coexist for a considerable period of time, it is important to improve the performance of existing networks. One such improvement recently proposed is to enhance the throughput of ad hoc networks by using dual-hop relay-based transmission schemes. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-based transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-based medium access control (MAC) protocols. Based on the recently reported relay-enabled Distributed Coordination Function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-based ad hoc networks. This model can predict energy consumption in ideal environment and with transmission errors. It is shown that using a relay results in not only better throughput but also better energy efficiency. Copyright (C) 2009 Rizwan Ahmad et al.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
This paper analyzes the delay performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under ideal condition and in the presence of transmission errors. Relays are nodes capable of supporting high data rates for other low data rate nodes. In ideal channel ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF). This gain is still maintained in the presence of errors. It is also expected of relays to reduce the delay. However, the impact on the delay behavior of ErDCF under transmission errors is not known. In this work, we have presented the impact of transmission errors on delay. It turns out that under transmission errors of sufficient magnitude to increase dropped packets, packet delay is reduced. This is due to increase in the probability of failure. As a result the packet drop time increases, thus reflecting the throughput degradation.
Resumo:
The complaints on the adoption of Arabic by the Copts that are voiced by the Apocalypse of Pseudo-Samuel have often been quoted as the expiring words of the dying Coptic language. This article seeks to show that they are not to be taken so literally, and that they should rather be inserted in the context of a rift within the medieval Coptic church over the question of language choice, and beyond this, over that of accommodation with the Muslims. The use of Arabic by the episcopal church of Miṣr and by some prominent figures around it, which was linked to their proximity to the Fatimid court, was resented and denounced by more traditional circles, centred on the Patriarchate and on some important monasteries such as the one at Qalamūn where the Apocalypse was written. The suggestion is also made that the text is contemporary with the beginning of Coptic literary production in Arabic and with the introduction of Egyptian Christians at the caliphal court, namely in the last quarter of the tenth century, at the time of Severus ibn al-Muqqafa‘.
Resumo:
Four protocols involving the application of low pressures, either toward the end of frying or after frying, were investigated with the aim of lowering the oil content of potato chips. Protocol 1 involving frying at atmospheric pressure followed by a 3 min draining time constituted the control. Protocol 2 involved lowering of pressure to 13.33 kPa, 40 s before the end of frying, followed by draining for 3 min at the same pressure. Protocol 3 was the same as protocol 2, except that the pressure was lowered 3 s before the end of frying. Protocol 4 involved lowering the pressure to 13.33 kPa after the product was lifted from the oil and holding it at this value over the draining time of 3 min. Protocol 4 gave a product having the lowest oil content (37.12 g oil/100 g defatted dry matter), while protocol 2 gave the product with highest oil content (71.10 g oil/100 g defatted dry matter), followed by those obtained using protocols 1 and 3(68.48 g oil/100 g defatted dry matter and 52.50 g oil/100 g defatted dry matter, respectively). Protocol 4 was further evaluated to study the effects of draining times and vacuum applied, and compared with the control. It was noted that over the modest range of pressures investigated, there was no significant effect of the vacuum applied on the oil content of the product. This study demonstrates that the oil content of potato chips can be lowered significantly by combining atmospheric frying with draining under vacuum.
Resumo:
This paper represents a study of the transient changes occurring in temperature, and moisture and oil contents during the so called “post-frying drainage”—which is the duration for which a product is held in the head space of the fryer after it is removed from the oil. Since most of the oil adhering to the product penetrates into the structure during this period, this paper examines the effects of applying vacuum during drainage (1.33 kPa) to maintain the product temperature consistently above the water saturation temperature corresponding to the prevailing pressure (11 °C), which potentially eliminates water condensation and prevents the occluded surface oil from penetrating into the product structure. Draining under vacuum significantly lowers the oil content of potato chips by 38% compared to atmospheric drainage. This phenomenon can be further confirmed by confocal laser scanning microscopy (CLSM) images, which show that the boundary between the core and the crust regions is clearly visible in the case of vacuum drainage, whereas in the case of atmospheric drainage, the oil is distributed throughout the structure. Unfortunately, the same approach did not reduce the oil content of French fries—the oil content of vacuum-drained product was found similar to the product obtained by draining under atmospheric pressure. This is because the reduction in oil content only occurs when there is net moisture evaporation from the product and the evaporation rate is sufficient to force out the oil from the product; this was clearly not the case with French fries. The CLSM images show that the oil distribution in the products drained under atmospheric pressure and vacuum was similar.
Resumo:
This paper explores the possibility of combining moderate vacuum frying followed by post-frying high vacuum application during the oil drainage stage, with the aim to reduce oil content in potato chips. Potato slices were initially vacuum fried under two operating conditions (140 °C, 20 kPa and 162 °C, 50.67 kPa) until the moisture content reached 10 and 15 % (wet basis), prior to holding the samples in the head space under high vacuum level (1.33 kPa). This two-stage process was found to lower significantly the amount of oil taken up by potato chips by an amount as high as 48 %, compared to drainage at the same pressure as the frying pressure. Reducing the pressure value to 1.33 kPa reduced the water saturation temperature (11 °C), causing the product to continuously lose moisture during the course of drainage. Continuous release of water vapour prevented the occluded surface oil from penetrating into the product structure and released it from the surface of the product. When frying and drainage occurred at the same pressure, the temperature of the product fell below the water saturation temperature soon after it was lifted out of the oil, which resulted in the oil getting sucked into the product. Thus, lowering the pressure after frying to a value well below the frying pressure is a promising method to lower oil uptake by the product.
Resumo:
The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.
Resumo:
The emergence of high-density wireless local area network (WLAN) deployments in recent years is a testament to the insatiable demands for wireless broadband services. The increased density of WLAN deployments brings with it the potential of increased capacity, extended coverage, and exciting new applications. However, the corresponding increase in contention and interference can significantly degrade throughputs, unless new challenges in channel assignment are effectively addressed. In this paper, a client-assisted channel assignment scheme that can provide enhanced throughput is proposed. A study on the impact of interference on throughput with multiple access points (APs)is first undertaken using a novel approach that determines the possibility of parallel transmissions. A metric with a good correlation to the throughput, i.e., the number of conflict pairs, is used in the client-assisted minimum conflict pairs (MICPA) scheme. In this scheme, measurements from clients are used to assist the AP in determining the channel with the minimum number of conflict pairs to maximize its expected throughput. Simulation results show that the client-assisted MICPA scheme can provide meaningful throughput improvements over other schemes that only utilize the AP’s measurements.
Resumo:
Fried products impose a health concerns due to considerable amount of oil they contain. Production of snack foods with minimal oil content and good management of oil during frying to minimise the production of toxic compounds continue to be challenging aims. This paper aims to investigate the possibility of producing a fat-free food snack by replacing frying oil with a non-fat medium. Glucose was melted and its temperature was then brought to 185°C and used to fry potato strips, to obtain a product referred here as glucose fries. The resulting product was compared with French fries prepared conventionally under conditions that resulted in similar final moisture content. The resulting products were also examined for crust formation, texture parameters, colour development and glucose content. Stereo microscope images showed that similar crusts were formed in the glucose fries and French fries. Texture parameters were found to be similar for both products at 5mm and 2 mm penetration depth. The maximum hardness at 2mm penetration depth was also similar for both products, but different from cooked potato. The colour development which characterised French fries was also observed in glucose fries. The glucose content in glucose fries was found to be twice the content of French fries, which is to be expected since glucose absorbed or adhered to the surface. In conclusion, glucose fries, with similar texture and colour characteristics to that of French fries, can be prepared by using a non-fat frying medium.
Resumo:
With the increase in e-commerce and the digitisation of design data and information,the construction sector has become reliant upon IT infrastructure and systems. The design and production process is more complex, more interconnected, and reliant upon greater information mobility, with seamless exchange of data and information in real time. Construction small and medium-sized enterprises (CSMEs), in particular,the speciality contractors, can effectively utilise cost-effective collaboration-enabling technologies, such as cloud computing, to help in the effective transfer of information and data to improve productivity. The system dynamics (SD) approach offers a perspective and tools to enable a better understanding of the dynamics of complex systems. This research focuses upon system dynamics methodology as a modelling and analysis tool in order to understand and identify the key drivers in the absorption of cloud computing for CSMEs. The aim of this paper is to determine how the use of system dynamics (SD) can improve the management of information flow through collaborative technologies leading to improved productivity. The data supporting the use of system dynamics was obtained through a pilot study consisting of questionnaires and interviews from five CSMEs in the UK house-building sector.