117 resultados para Agricultural land planning


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiences from the Mitigation Options for Phosphorus and Sediment (MOPS) projects, which aim to determine the effectiveness of measures to reduce pollutant loading from agricultural land to surface waters, have been used to contribute to the findings of a recent paper (Kay et al., 2009, Agricultural Systems, 99, 67–75), which reviewed the efficacy of contemporary agricultural stewardship measures for ameliorating the water pollution problems of key concern to the UK water industry. MOPS1 is a recently completed 3-year research project on three different soil types in the UK, which focused on mitigation options for winter cereals. MOPS1 demonstrated that tramlines can be the major pathway for sediment and nutrient transfer from arable hillslopes, and that although minimum tillage, crop residue incorporation, contour cultivation, and beetle banks also have potential to be cost-effective mitigation options, tramline management is the one of the most promising treatments for mitigating diffuse pollution losses, as it was able to reduce sediment and nutrient losses by 72–99% in four out of five site years trialled. Using information from the MOPS projects, this paper builds on the findings of Kay et al. to provide an updated picture of the evidence available and the immediate needs for research in this area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rapidly increasing population densities in Malawi have put a huge strain on the existing agricultural land and the surrounding woodland. Smallholder agriculture is the dominant economic activity of Malawi’s rural population and many farmers have been forced to cultivate marginal lands with less fertile soils, making conditions much more difficult to grow crops. Natural woodland is under increasing pressure from the opening of new lands for cultivation and the increased demand for firewood, timber and other woody resources, with rural households historically obtaining most of their complementary inputs and saleable commodities from nearby areas of forest (Arnold, 1997a). Despite this increasing pressure, woodlands are not being cleared indiscriminately; selected indigenous species are left standing in fields and around households. These are joined by exotic species that are planted and maintained. These trees provide products and services that are vital, yielding food, firewood, building materials and medicine, replenishing soil fertility and protecting against soil erosion. Following a Boserupian approach, this study attempts to establish the reality of a trajectory of enhanced on-farm tree planting and management as population pressure mounts and as part of a more general process of agricultural intensification. The study examines the combination of factors (social, economic, political and environmental) that either stimulate or discourage on-farm tree planting on smallholdings in Malawi, highlighting how woodland resource use changes over a gradient of land use intensity. This study gives a detailed insight into the way that tree planting and management in the smallholder farming system in Malawi works and identifies a trend of increased tree planting/management alongside an increase in agricultural intensification. However, there is no single ‘path’ of intensification; the link between agricultural change and tree planting is complex and there are many trajectories of intensification that a farmer may follow, dependent on his/her social or economic circumstances. The study recommends that agroforestry interventions give rigorous consideration to the needs of the local community, and the suitability of trees to address those needs, before embarking on programmes that advocate tree planting and management as a panacea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The process of global deforestation calls for urgent attention, particularly in South America where deforestation rates have failed to decline over the past 20 years. The main direct cause of deforestation is land conversion to agriculture. We combine data from the FAO and the World Bank for six tropical Southern American countries over the period 1970–2006, estimate a panel data model accounting for various determinants of agricultural land expansion and derive elasticities to quantify the effect of the different independent variables. We investigate whether agricultural intensification, in conjunction with governance factors, has been promoting agricultural expansion, leading to a ‘‘Jevons paradox’’. The paradox occurs if an increase in the productivity of one factor (here agricultural land) leads to its increased, rather than decreased, utilization. We find that for high values of our governance indicators a Jevons paradox exists even for moderate levels of agricultural productivity, leading to an overall expansion of agricultural area. Agricultural expansion is also positively related to the level of service on external debt and population growth, while its association with agricultural exports is only moderate. Finally, we find no evidence of an environmental Kuznets curve, as agricultural area is ultimately positively correlated to per-capita income levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to 2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by 1 K); however, maximum temperatures increased by 2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research aimed to investigate the implications of changing agricultural land use from food production towards increased cashew cultivation for food security and poverty alleviation in Jaman North District, Brong-Ahafo Region of Ghana. Based on qualitative, participatory research with a total of 60 participants, the research found that increased cashew production had led to improvements in living standards for many farmers and their children over recent years. Global demand for cashew is projected to continue to grow rapidly in the immediate future and cashew-growing areas of Ghana are well placed to respond to this demand. Cashew farmers however were subject to price fluctuations in the value of Raw Cashew Nuts (RCN) due to unequal power relations with intermediaries and export buyer companies and global markets, in addition to other vulnerabilities that constrained the quality and quantity of cashew and food crops they could produce. The expansion of cashew plantations was leading to pressure on the remaining family lands available for food crop production, which community members feared could potentially compromise the food security of rural communities and the land inheritance of future generations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agricultural land use in much of Brong-Ahafo region, Ghana has been shifting from the production of food crops towards increased cashew nut cultivation in recent years. This article explores everyday, less visible, gendered and generational struggles over family farms in West Africa, based on qualitative, participatory research in a rural community that is becoming increasingly integrated into the global capitalist system. As a tree crop, cashew was regarded as an individual man's property to be passed on to his wife and children rather than to extended family members, which differed from the communal land tenure arrangements governing food crop cultivation. The tendency for land, cash crops and income to be controlled by men, despite women's and young people's significant labour contributions to family farms, and for women to rely on food crop production for their main source of income and for household food security, means that women and girls are more likely to lose out when cashew plantations are expanded to the detriment of land for food crops. Intergenerational tensions emerged when young people felt that their parents and elders were neglecting their views and concerns. The research provides important insights into gendered and generational power relations regarding land access, property rights and intra-household decision-making processes. Greater dialogue between genders and generations may help to tackle unequal power relations and lead to shared decision-making processes that build the resilience of rural communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity. Objective To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments. Methods Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses. Results Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification. Conclusions Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-3S days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35-days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. (C) 2004 Society of Chemical Industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing concern about soil enrichment with K+ and subsequent potential losses following long-term application of poor quality water to agricultural land. Different models are increasingly being used for predicting or analyzing water flow and chemical transport in soils and groundwater. The convective-dispersive equation (CDE) and the convective log-normal transfer function (CLT) models were fitted to the potassium (K+) leaching data. The CDE and CLT models produced equivalent goodness of fit. Simulated breakthrough curves for a range of CaCl2 concentration based on parameters of 15 mmol l(-1) CaCl2 were characterised by an early peak position associated with higher K+ concentration as the CaCl2 concentration used in leaching experiments decreased. In another method, the parameters estimated from 15 mmol l(-1) CaCl2 solution were used for all other CaCl2 concentrations, and the best value of retardation factor (R) was optimised for each data set. A better prediction was found. With decreasing CaCl2 concentration the value of R is required to be more than that measured (except for 10 mmol l(-1) CaCl2), if the estimated parameters of 15 mmol l(-1) CaCl2 are used. The two models suffer from the fact that they need to be calibrated against a data set, and some of their parameters are not measurable and cannot be determined independently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annual total phosphorus (TP) export data from 108 European micro-catchments were analyzed against descriptive catchment data on climate (runoff), soil types, catchment size, and land use. The best possible empirical model developed included runoff, proportion of agricultural land and catchment size as explanatory variables but with a low explanation of the variance in the dataset (R-2 = 0.37). Improved country specific empirical models could be developed in some cases. The best example was from Norway where an analysis of TP-export data from 12 predominantly agricultural micro-catchments revealed a relationship explaining 96% of the variance in TP-export. The explanatory variables were in this case soil-P status (P-AL), proportion of organic soil, and the export of suspended sediment. Another example is from Denmark where an empirical model was established for the basic annual average TP-export from 24 catchments with percentage sandy soils, percentage organic soils, runoff, and application of phosphorus in fertilizer and animal manure as explanatory variables (R-2 = 0.97).