28 resultados para Agoniste B1
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
Understanding the molecular basis of acid tolerance in the food-borne pathogen Listeria monocytogenes is important as this property contributes to survival in the food-chain and enhances survival within infected hosts. The aim of this study was to identify genes contributing to acid tolerance in L. monocytogenes using transposon mutagenesis and subsequently to elucidate the physiological role of these genes in acid tolerance. One mutant harboring a Tn917 insertion in the thiT gene (formerly lmo1429), which encodes a thiamine (vitamin B1) uptake system, was found to be highly sensitive to acid. The acid-sensitive phenotype associated with loss of this gene was confirmed with an independently isolated mutant, from which the thiT gene was deleted (ΔthiT). Cells of both wild-type and ΔthiT mutant that were thiamine depleted were found to be significantly more acid sensitive than control cultures. Thiamine-depleted cultures failed to produce significant concentrations of acetoin, consistent with the known thiamine dependence of acetolactate synthase, an enzyme required for acetoin synthesis from pyruvate. As acetoin synthesis is a proton-consuming process, we suggest that the acid sensitivity observed in thiamine-depleted cultures may be owing to an inability to produce acetoin.
Resumo:
Three Salmonella enterica serovar Orion var. 15+ isolates of distinct provenance were tested for survival in various stress assays. All were less able to survive desiccation than a virulent S. Enreritidis strain, with levels of survival similar to a rpoS mutant of the S. Enteritidis strain, whereas one isolate (F3720) was significantly more acid tolerant. The S. Orion var. 15+ isolates were motile by flagellae and elaborated type-1 and curli-like fimbriae; surface organelles that are considered virulence determinants in Salmonella pathogenesis. Each adhered and invaded HEp-2 tissue culture cells with similar proficiency to the S. Enteritidis control but were significantly less virulent than S. En teritidis in the one-day-old and seven-day-old chick model. Given an oral dose of 1 x 10(3) cfu to one-day-old chicken, S. Orion var. 15+ isolates colonised 25% of liver and spleens examined at 24 h whereas S. Enteritidis colonised 100% of organs by the same with the same dose. Given an oral dose of 1 x 10(7) cfu at seven-day old, S. Orion var. 15+ failed to colonise livers and spleens in any bird examined at 24 h whereas S. Enteritidis colonised 50% of organs by the same with the same dose. Based on the number of internal organs colonised, one of the three S. Orion var. 15+ isolates tested (strain F3720) was significantly more invasive than the other two (B1 and B7). Also, strain F3720 was shed less than either B1 or B7 supporting the concept that there may be an inverse relationship between the ability to colonise deep tissues and to persist in the gut. These data are discussed in the light that S. Orion var. 15+ is associated with sporadic outbreaks of human infection rather than epidemics.
Resumo:
Possible changes in the frequency and intensity of windstorms under future climate conditions during the 21st century are investigated based on an ECHAM5 GCM multi-scenario ensemble. The intensity of a storm is quantified by the associated estimated loss derived with using an empirical model. The geographical focus is ‘Core Europe’, which comprises countries of Western Europe. Possible changes of losses are analysed by comparing ECHAM5 GCM data for recent (20C, 1960 to 2000) and future climate conditions (B1, A1B, A2; 2060 to 2100), each with 3 ensemble members. Changes are quantified using both rank statistics and return periods (RP) estimated by fitting an extreme value distribution using the peak over threshold method to potential storm losses. The estimated losses for ECHAM5 20C and reanalysis events show similar statistical features in terms of return periods. Under future climate conditions, all climate scenarios show an increase in both frequency and magnitude of potential losses caused by windstorms for Core Europe. Future losses that are double the highest ECHAM5 20C loss are identified for some countries. While positive changes of ranking are significant for many countries and multiple scenarios, significantly shorter RPs are mostly found under the A2 scenario for return levels correspondent to 20 yr losses or less. The emergence time of the statistically significant changes in loss varies from 2027 to 2100. These results imply an increased risk of occurrence of windstorm-associated losses, which can be largely attributed to changes in the meteorological severity of the events. Additionally, factors such as changes in the cyclone paths and in the location of the wind signatures relative to highly populated areas are also important to explain the changes in estimated losses.
Resumo:
Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.
Resumo:
Climate is one of the main factors controlling winegrape production. Bioclimatic indices describing the suitability of a particular region for wine production are a widely used zoning tool. Seven suitable bioclimatic indices characterize regions in Europe with different viticultural suitability, and their possible geographical shifts under future climate conditions are addressed using regional climate model simulations. The indices are calculated from climatic variables (daily values of temperature and precipitation) obtained from transient ensemble simulations with the regional model COSMO-CLM. Index maps for recent decades (1960–2000) and for the 21st century (following the IPCC-SRES B1 and A1B scenarios) are compared. Results show that climate change is projected to have a significant effect on European viticultural geography. Detrimental impacts on winegrowing are predicted in southern Europe, mainly due to increased dryness and cumulative thermal effects during the growing season. These changes represent an important constraint to grapevine growth and development, making adaptation strategies crucial, such as changing varieties or introducing water supply by irrigation. Conversely, in western and central Europe, projected future changes will benefit not only wine quality, but might also demarcate new potential areas for viticulture, despite some likely threats associated with diseases. Regardless of the inherent uncertainties, this approach provides valuable information for implementing proper and diverse adaptation measures in different European regions.
Resumo:
Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.
Resumo:
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
Resumo:
The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties ‘Robigus’ and ‘Solstice’ were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety ‘Robigus’, and QCp.niab.6A and QCp.niab.4D in the variety ‘Solstice’. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from ‘Robigus’ and Rht-D1b from ‘Solstice’. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.
Resumo:
In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.
Resumo:
This study contributes to ongoing discussions on how measures of lexical diversity (LD) can help discriminate between essays from second language learners of English, whose work has been assessed as belonging to levels B1 to C2 of the Common European Framework of Reference (CEFR). The focus is in particular on how different operationalisations of what constitutes a “different word” (type) impact on the LD measures themselves and on their ability to discriminate between CEFR levels. The results show that basic measures of LD, such as the number of different words, the TTR (Templin 1957) and the Index of Guiraud (Guiraud 1954) explain more variance in the CEFR levels than sophisticated measures, such as D (Malvern et al. 2004), HD-D (McCarthy and Jarvis 2007) and MTLD (McCarthy 2005) provided text length is kept constant across texts. A simple count of different words (defined as lemma’s and not as word families) was the best predictor of CEFR levels and explained 22 percent of the variance in overall scores on the Pearson Test of English Academic in essays written by 176 test takers.
Resumo:
Precipitation over western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the 21st century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g., jet stream, cyclone activity, and blocking frequencies. A novel weather typing within the sector (30°W–10°E, 25–70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979–2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1, and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 Coupled Model Intercomparison Project 5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the (Representative Concentration Pathways) RCP8.5 scenario over 2071–2100, the frequencies of the three driest types (S1, B2, and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (−3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be duly taken into account, our approach permits a better understanding of the projected trends for precipitation over WE.