109 resultados para African cooperation.
Resumo:
This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.
Resumo:
Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes during transport downwind of West Africa. The mid-troposphere plume spreads over altitude between 1.5 and 6 km over the Atlantic Ocean. Even though the plume was old, it was still very photochemically active (mean net O3 production rates over 10 days of 2.6 ppbv/day and up to 7 ppbv/day during the first days) above 3 km especially during the first few days of transport westward. It is also shown that the impact of high aerosol loads in the MT plume on photolysis rates serves to delay the peak in modelled O3 concentrations. These results suggest that a significant fraction of enhanced O3 in mid-troposphere over the Atlantic comes from BB sources during the summer monsoon period. According to simulated occurrence of such transport, BB may be the main source for O3 enhancement in the equatorial south Atlantic MT, at least in August 2006. The upper tropospheric plume was also still photochemically active, although mean net O3 production rates were slower (1.3 ppbv/day). The results suggest that, whilst the transport of BB pollutants to the UT is variable (as shown by the mesoscale model simulations), pollution from biomass burning can make an important contribution to additional photochemical production of O3 in addition to other important sources such as nitrogen oxides (NOx) from lightning.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).
Resumo:
Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry) to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008) is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et al (2008).
Resumo:
Recent research in Sub-Saharan Africa has revealed the importance of children’s caring roles in families affected by HIV and AIDS. However, few studies have explored young caregiving in the context of HIV in the UK, where recently arrived African migrant and refugee families are adversely affected by the global epidemic. This paper explores young people’s socio-spatial experiences of caring for a parent with HIV, based on qualitative research with 37 respondents in London and other urban areas in England. In-depth semi-structured interviews were conducted with young people with caring responsibilities and mothers with HIV, who were predominantly African migrants, as well as with service providers. Drawing on their perspectives, the paper discusses the ways that young people and mothers negotiate the boundaries of young people’s care work within and beyond homespace, according to norms of age, gender, generational relations and cultural constructions of childhood. Despite close attachments within the family, the emotional effects of living with a highly stigmatised life-limiting illness, pressures associated with insecure immigration status, transnational migration and low income undermined African mothers’ and young people’s sense of security and belonging to homespace. These factors also restricted their mobility and social participation in school/college and neighbourhood spaces. While young people and mothers valued supportive safe spaces within the community, the stigma surrounding HIV significantly affected their ability to seek support. The article identifies security, privacy, independence and social mobility as key dimensions of African young people’s and mothers’ imagined futures of ‘home’ and ‘family’.
Antigone's boat: the colonial and the postcolonial in Tegonni: an African Antigone, by Femi Osofisan
Resumo:
In Resolution 1556, the Security Council, with the conflict in Darfur clearly in mind, determined that the ‘situation in Sudan constitutes a threat to international peace and security and to stability in the region’. This article focuses on the response by the United Nations, in particular the Security Council, and the African Union to the Darfur conflict. It begins by exploring the role of peacekeeping operations and regional arrangements or agencies in the overarching architecture of international peace and security. Having laid this frame of reference, it then looks at the modalities of peacekeeping in Darfur. These operations began with the African Union acting in isolation but have transitioned to an increasingly important role being played by the United Nations and a hybrid peacekeeping presence. Finally, this article asks whether, assuming that a legally dispositive conclusion can be drawn that genocide has taken place in Darfur since the outbreak of hostilities there in 2003, there exists a legal justification, or even obligation, for non-compliance by states with the sanctions regime established by Security Council Resolutions 1556 and 1591. This regime of sanctions has played an important part in the Security Council's approach to Darfur but has been, unfortunately, left largely unexamined from the standpoint of international legality.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
The antifeedant activities of Piper guineense Schum et Thonn (Piperaceae), Aframomum melegueta (Rosk) K. Schum (Zingiberaceae), Aframomum citratum (Pareira) K. Schum (Zingiberaceae) and Afrostyrax kamerunensis Perkins and Gilg (Huaceae) seed extracts were investigated in laboratory dual- and no-choice bioassays using third-instar Spodoptera littoralis (Boisduval) larvae. In the dual-choice test, the hexane and methanol extracts of A. melegueta showed potent dose-dependent antifeedant activity at concentrations of ≥300 ppm and the water extract at ≥500 ppm, as illustrated by significantly lower leaf consumptions. Aframomum citratum methanol and water extracts exhibited antifeedant activity at ≥300 and ≥1000 ppm, respectively, but the hexane and ethanol extracts did not affect feeding at any concentration. Piper guineense ethanol and water extracts showed dose-dependent antifeedant effects at ≥300 and ≥500 ppm, respectively, and the methanol extract was active only at 1000 ppm. None of the extracts of the highly aromatic A. kamerunensis exhibited antifeedant activity at any of the tested concentrations. In the no-choice bioassays, extracts with antifeedant activity in the dual-choice tests also showed dose-dependent feeding inhibition. The hexane and methanol extracts of A. melegueta were effective in the no-choice tests at ≥100 and ≥500 ppm, respectively, and the water extract at ≥300 ppm. Similarly, the A. citratum water and methanol extracts were active at ≥500 ppm and the P. guineense water and ethanol extracts at ≥100 ppm. GC/MS chromatography of A. melegueta hexane and methanol extracts revealed volatile constituents with known anti-insect activity. The hexane and methanol extracts of A. melegueta, the methanol extract of A. citratum and the water and ethanol extracts of P. guineense may have potential for use by subsistence farmers.