103 resultados para Advection
Resumo:
Mid-latitude weather systems are key contributors to the transport of atmospheric water vapour, but less is known about the role of the boundary layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic systems to include moist processes, using idealised simulations of cyclone waves to investigate the three-way interaction between the boundary layer, atmospheric moisture and large-scale dynamics. Forced by large-scale thermal advection, boundary-layer structures develop over large areas, analogous to the daytime convective boundary layer, the nocturnal stable boundary layer and transitional regimes between these extremes.
Resumo:
This study investigates variability in the intensity of the wintertime Siberian high (SH) by defining a robust SH index (SHI) and correlating it with selected meteorological fields and teleconnection indices. A dramatic trend of -2.5 hPa decade(-1) has been found in the SHI between 1978 and 2001 with unprecedented (since 1871) low values of the SHI. The weakening of the SH has been confirmed by analyzing different historical gridded analyses and individual station observations of sea level pressure (SLP) and excluding possible effects from the conversion of surface pressure to SLP. SHI correlation maps with various meteorological fields show that SH impacts on circulation and temperature patterns extend far outside the SH source area extending from the Arctic to the tropical Pacific. Advection of warm air from eastern Europe has been identified as the main mechanism causing milder than normal conditions over the Kara and Laptev Seas in association with a strong SH. Despite the strong impacts of the variability in the SH on climatic variability across the Northern Hemisphere, correlations between the SHI and the main teleconnection indices of the Northern Hemisphere are weak. Regression analysis has shown that teleconnection indices are not able to reproduce the interannual variability and trends in the SH. The inclusion of regional surface temperature in the regression model provides closer agreement between the original and reconstructed SHI.
Resumo:
Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.
Resumo:
An isentropic potential vorticity (PV) budget analysis is employed to examine the role of synoptic transients, advection, and nonconservative processes as forcings for the evolution of the low-frequency PV anomalies locally and those associated with the North Atlantic Oscillation (NAO) and the Pacific–North American (PNA) pattern. Specifically, the rate of change of the low-frequency PV is expressed as a sum of tendencies due to divergence of eddy transport, advection by the low-frequency flow (hereafter referred to as advection), and the residual nonconservative processes. The balance between the variances and covariances of these terms is illustrated using a novel vector representation. It is shown that for most locations, as well as for the PNA pattern, the PV variability is dominantly driven by advection. The eddy forcing explains a small amount of the tendency variance. For the NAO, the role of synoptic eddy fluxes is found to be stronger, explaining on average 15% of the NAO tendency variance. Previous studies have not assessed quantitively how the various forcings balance the tendency. Thus, such studies may have overestimated the role of eddy fluxes for the evolution of teleconnections by examining, for example, composites and regressions that indicate maintenance, rather than evolution driven by the eddies. The authors confirm this contrasting view by showing that during persistent blocking (negative NAO) episodes the eddy driving is relatively stronger.
Resumo:
Mostly because of a lack of observations, fundamental aspects of the St. Lawrence Estuary's wintertime response to forcing remain poorly understood. The results of a field campaign over the winter of 2002/03 in the estuary are presented. The response of the system to tidal forcing is assessed through the use of harmonic analyses of temperature, salinity, sea level, and current observations. The analyses confirm previous evidence for the presence of semidiurnal internal tides, albeit at greater depths than previously observed for ice-free months. The low-frequency tidal streams were found to be mostly baroclinic in character and to produce an important neap tide intensification of the estuarine circulation. Despite stronger atmospheric momentum forcing in winter, the response is found to be less coherent with the winds than seen in previous studies of ice-free months. The tidal residuals show the cold intermediate layer in the estuary is renewed rapidly ( 14 days) in late March by the advection of a wedge of near-freezing waters from the Gulf of St. Lawrence. In situ processes appeared to play a lesser role in the renewal of this layer. In particular, significant wintertime deepening of the estuarine surface mixed layer was prevented by surface stability, which remained high throughout the winter. The observations also suggest that the bottom circulation was intensified during winter, with the intrusion in the deep layer of relatively warm Atlantic waters, such that the 3 C isotherm rose from below 150 m to near 60 m.
Resumo:
Two fundamental perspectives on the dynamics of midlatitude weather systems are provided by potential vorticity (PV) and the omega equation. The aim of this paper is to investigate the link between the two perspectives, which has so far received very little attention in the meteorological literature. It also aims to give a quantitative basis for discussion of quasi-geostrophic vertical motion in terms of components associated with system movement, maintaining a constant thermal structure, and with the development of that structure. The former links with the isentropic relative-flow analysis technique. Viewed in a moving frame of reference, the measured development of a system depends on the velocity of that frame of reference. The requirement that the development should be a minimum provides a quantitative method for determining the optimum system velocity. The component of vertical velocity associated with development is shown to satisfy an omega equation with forcing determined from the relative advection of interior PV and boundary temperature. The analysis carries through in the presence of diabatic heating provided the omega equation forcing is based on the interior PV and boundary thermal tendencies, including the heating effect. The analysis is shown to be possible also at the level of the semi-geostrophic approximation. The analysis technique is applied to a number of idealized problems that can be considered to be building blocks for midlatitude synoptic-scale dynamics. They focus on the influences of interior PV, boundary temperature, an interior boundary, baroclinic instability associated with two boundaries, and also diabatic heating. In each case, insights yielded by the new perspective are sought into the dynamical behaviour, especially that related to vertical motion. Copyright © 2003 Royal Meteorological Society
Resumo:
Observations show the oceans have warmed over the past 40 yr. with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean-atmosphere climate models [the Parallel Climate Model version 1 (PCM) and the Hadley Centre Coupled Climate Model version 3 (HadCM3)] that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming. In this comparison the models were sampled at the same locations as gridded yearly observed data. In the top 100 m of the water column the warming is well separated from natural variability, including both variability arising from internal instabilities of the coupled ocean-atmosphere climate system and that arising from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not significant, but then increases again below this level, and remains significant down to 600 m. Analysis of PCM's heat budget indicates that the warming is driven by an increase in net surface heat flux that reaches 0.7 W m(-2) by the 1990s; the downward longwave flux increases bv 3.7 W m(-2). which is not fully compensated by an increase in the upward longwave flux of 2.2 W m(-2). Latent and net solar heat fluxes each decrease by about 0.6 W m(-2). The changes in the individual longwave components are distinguishable from the preindustrial mean by the 1920s, but due to cancellation of components. changes in the net surface heat flux do not become well separated from zero until the 1960s. Changes in advection can also play an important role in local ocean warming due to anthropogenic forcing, depending, on the location. The observed sampling of ocean temperature is highly variable in space and time. but sufficient to detect the anthropogenic warming signal in all basins, at least in the surface layers, bv the 1980s.
Resumo:
Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (N-ee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then N-ee = F-c, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, F-c departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged F-c-at canopy top differs by more than 20% compared to the flat-terrain case.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.
Resumo:
In this study, the processes affecting sea surface temperature variability over the 1992–98 period, encompassing the very strong 1997–98 El Niño event, are analyzed. A tropical Pacific Ocean general circulation model, forced by a combination of weekly ERS1–2 and TAO wind stresses, and climatological heat and freshwater fluxes, is first validated against observations. The model reproduces the main features of the tropical Pacific mean state, despite a weaker than observed thermal stratification, a 0.1 m s−1 too strong (weak) South Equatorial Current (North Equatorial Countercurrent), and a slight underestimate of the Equatorial Undercurrent. Good agreement is found between the model dynamic height and TOPEX/Poseidon sea level variability, with correlation/rms differences of 0.80/4.7 cm on average in the 10°N–10°S band. The model sea surface temperature variability is a bit weak, but reproduces the main features of interannual variability during the 1992–98 period. The model compares well with the TAO current variability at the equator, with correlation/rms differences of 0.81/0.23 m s−1 for surface currents. The model therefore reproduces well the observed interannual variability, with wind stress as the only interannually varying forcing. This good agreement with observations provides confidence in the comprehensive three-dimensional circulation and thermal structure of the model. A close examination of mixed layer heat balance is thus undertaken, contrasting the mean seasonal cycle of the 1993–96 period and the 1997–98 El Niño. In the eastern Pacific, cooling by exchanges with the subsurface (vertical advection, mixing, and entrainment), the atmospheric forcing, and the eddies (mainly the tropical instability waves) are the three main contributors to the heat budget. In the central–western Pacific, the zonal advection by low-frequency currents becomes the main contributor. Westerly wind bursts (in December 1996 and March and June 1997) were found to play a decisive role in the onset of the 1997–98 El Niño. They contributed to the early warming in the eastern Pacific because the downwelling Kelvin waves that they excited diminished subsurface cooling there. But it is mainly through eastward advection of the warm pool that they generated temperature anomalies in the central Pacific. The end of El Niño can be linked to the large-scale easterly anomalies that developed in the western Pacific and spread eastward, from the end of 1997 onward. In the far-western Pacific, because of the shallower than normal thermocline, these easterlies cooled the SST by vertical processes. In the central Pacific, easterlies pushed the warm pool back to the west. In the east, they led to a shallower thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the surface layer.
Resumo:
The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.
Resumo:
The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.
Resumo:
The propagation velocity and propagation mechanism for vortices on a β plane are determined for a reduced-gravity model by integrating the momentum equations over the β plane. Isolated vortices, vortices in a background current, and initial vortex propagation from rest are studied. The propagation mechanism for isolated anticyclones as well as cyclones, which has been lacking up to now, is presented. It is shown that, to first order, the vortex moves to generate a Coriolis force on the mass anomaly of the vortex to compensate for the force on the vortex due to the variation of the Coriolis parameter. Only the mass anomaly of the vortex is of importance, because the Coriolis force due to the motion of the bulk of the layer moving with the vortex is almost fully compensated by the Coriolis force on the motion of the exterior flow. Because the mass anomaly of a cyclone is negative the force and acceleration have opposite sign. The role of dipolar structures in steadily moving vortices is discussed, and it is shown that their overall structure is fixed by the steady westward motion of the mass anomaly. Furthermore, it is shown that reduced-gravity vortices are not advected with a background flow. The reason for this behavior is that the background flow changes the ambient vorticity gradient such that the vortex obtains an extra self-propagation term that exactly cancels the advection by the background flow. Last, it is shown that a vortex initially at rest will accelerate equatorward first, after which a westward motion is generated. This result is independent of the sign of the vortex.
Resumo:
We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone's warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.
Resumo:
Mesoscale convective systems (MCSs) are relatively rare events in the UK but, when they do occur, can be associated with weather that is considered extreme with respect to climatology (as indicated by the number of such events that have been analysed as case studies). These case studies usually associate UK MCSs with a synoptic environment known as the Spanish plume. Here a previously published 17 year climatology of UK MCS events is extended to the present day (from 1998 to 2008) and these events classified according to the synoptic environment in which they form. Three distinct synoptic environments have been identified, here termed the classical Spanish plume, modified Spanish plume, and European easterly plume. Detailed case studies of the two latter, newly defined, environments are presented. Composites produced for each environment further reveal the differences between them. The classical Spanish plume is associated with an eastward propagating baroclinic cyclone that evolves according to idealised life cycle 1. Conditional instability is released from a warm moist plume of air advected northeastwards from Iberia that is capped by warmer, but very dry air, from the Spanish plateau. The modified Spanish plume is associated with a slowly moving mature frontal system associated with a forward tilting trough (and possibly cut-off low) at 500 hPa that evolves according to idealised life cycle 2. As in the classical Spanish plume, conditional instability is released from a warm plume of air advected northwards from Iberia. The less frequent European easterly plume is associated with an omega block centred over Scandinavia at upper levels. Conditional instability is released from a warm plume of air advected westwards across northern continental Europe. Unlike the Spanish plume environments, the European easterly plume is not a warm sector phenomena associated with a baroclinic cyclone. However, in all environments the organisation of convection is associated with the interaction of an upper-level disturbance with a low-level region of warm advection.